Activation Energy of Hydrogen–Methane Mixtures

In this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math&...

Full description

Bibliographic Details
Main Authors: Anastasia Moroshkina, Alina Ponomareva, Vladimir Mislavskii, Evgeniy Sereshchenko, Vladimir Gubernov, Viatcheslav Bykov, Sergey Minaev
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Fire
Subjects:
Online Access:https://www.mdpi.com/2571-6255/7/2/42
_version_ 1797298303195414528
author Anastasia Moroshkina
Alina Ponomareva
Vladimir Mislavskii
Evgeniy Sereshchenko
Vladimir Gubernov
Viatcheslav Bykov
Sergey Minaev
author_facet Anastasia Moroshkina
Alina Ponomareva
Vladimir Mislavskii
Evgeniy Sereshchenko
Vladimir Gubernov
Viatcheslav Bykov
Sergey Minaev
author_sort Anastasia Moroshkina
collection DOAJ
description In this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> = 0.7−1.0 and hydrogen fraction in methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, 2, 4) is experimentally determined using thin-filament pyrometry of flames stabilised on a flat porous burner under normal conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> bar, T = 20 °C). The experimental data are compared with numerical calculations within the detailed reaction mechanism GRI3.0 and both approaches confirm the linear correlation between mass flow rate and inverse flame temperature predicted in the theory. An analysis of the numerical and experimental data shows that, in the limit of lean hydrogen–methane–air mixtures, the activation energy approaches a constant value, which is not sensitive to the addition of hydrogen to methane. The mass flow rate for a freely propagating flame and, thus, the laminar burning velocity, are measured for mixtures with different hydrogen contents. This mass flow rate, scaled over the characteristic temperature dependence of the laminar burning velocity for a one-step reaction mechanism, is found and it can also be used in order to estimate the parameters of the overall reaction mechanisms. Such reaction mechanisms will find implementation in the numerical simulation of practical combustion devices with complex flows and geometries.
first_indexed 2024-03-07T22:33:58Z
format Article
id doaj.art-cda3674fe7964b5d93a2fc12a0cf75ee
institution Directory Open Access Journal
issn 2571-6255
language English
last_indexed 2024-03-07T22:33:58Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Fire
spelling doaj.art-cda3674fe7964b5d93a2fc12a0cf75ee2024-02-23T15:16:01ZengMDPI AGFire2571-62552024-01-01724210.3390/fire7020042Activation Energy of Hydrogen–Methane MixturesAnastasia Moroshkina0Alina Ponomareva1Vladimir Mislavskii2Evgeniy Sereshchenko3Vladimir Gubernov4Viatcheslav Bykov5Sergey Minaev6P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaThe Center for Chemical Engineering, ITMO University, 49 Kronverksky Prosp., St. Petersburg 197101, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaKarlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Strasse 4, Building 10.91, D-76131 Karlsruhe, GermanyP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaIn this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> = 0.7−1.0 and hydrogen fraction in methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, 2, 4) is experimentally determined using thin-filament pyrometry of flames stabilised on a flat porous burner under normal conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> bar, T = 20 °C). The experimental data are compared with numerical calculations within the detailed reaction mechanism GRI3.0 and both approaches confirm the linear correlation between mass flow rate and inverse flame temperature predicted in the theory. An analysis of the numerical and experimental data shows that, in the limit of lean hydrogen–methane–air mixtures, the activation energy approaches a constant value, which is not sensitive to the addition of hydrogen to methane. The mass flow rate for a freely propagating flame and, thus, the laminar burning velocity, are measured for mixtures with different hydrogen contents. This mass flow rate, scaled over the characteristic temperature dependence of the laminar burning velocity for a one-step reaction mechanism, is found and it can also be used in order to estimate the parameters of the overall reaction mechanisms. Such reaction mechanisms will find implementation in the numerical simulation of practical combustion devices with complex flows and geometries.https://www.mdpi.com/2571-6255/7/2/42activation energyhydrogen–methane–air flamehydrogen dilutionflat burnerdetailed reaction mechanismthin filament pyrometry
spellingShingle Anastasia Moroshkina
Alina Ponomareva
Vladimir Mislavskii
Evgeniy Sereshchenko
Vladimir Gubernov
Viatcheslav Bykov
Sergey Minaev
Activation Energy of Hydrogen–Methane Mixtures
Fire
activation energy
hydrogen–methane–air flame
hydrogen dilution
flat burner
detailed reaction mechanism
thin filament pyrometry
title Activation Energy of Hydrogen–Methane Mixtures
title_full Activation Energy of Hydrogen–Methane Mixtures
title_fullStr Activation Energy of Hydrogen–Methane Mixtures
title_full_unstemmed Activation Energy of Hydrogen–Methane Mixtures
title_short Activation Energy of Hydrogen–Methane Mixtures
title_sort activation energy of hydrogen methane mixtures
topic activation energy
hydrogen–methane–air flame
hydrogen dilution
flat burner
detailed reaction mechanism
thin filament pyrometry
url https://www.mdpi.com/2571-6255/7/2/42
work_keys_str_mv AT anastasiamoroshkina activationenergyofhydrogenmethanemixtures
AT alinaponomareva activationenergyofhydrogenmethanemixtures
AT vladimirmislavskii activationenergyofhydrogenmethanemixtures
AT evgeniysereshchenko activationenergyofhydrogenmethanemixtures
AT vladimirgubernov activationenergyofhydrogenmethanemixtures
AT viatcheslavbykov activationenergyofhydrogenmethanemixtures
AT sergeyminaev activationenergyofhydrogenmethanemixtures