Activation Energy of Hydrogen–Methane Mixtures
In this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math&...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Fire |
Subjects: | |
Online Access: | https://www.mdpi.com/2571-6255/7/2/42 |
_version_ | 1797298303195414528 |
---|---|
author | Anastasia Moroshkina Alina Ponomareva Vladimir Mislavskii Evgeniy Sereshchenko Vladimir Gubernov Viatcheslav Bykov Sergey Minaev |
author_facet | Anastasia Moroshkina Alina Ponomareva Vladimir Mislavskii Evgeniy Sereshchenko Vladimir Gubernov Viatcheslav Bykov Sergey Minaev |
author_sort | Anastasia Moroshkina |
collection | DOAJ |
description | In this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> = 0.7−1.0 and hydrogen fraction in methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, 2, 4) is experimentally determined using thin-filament pyrometry of flames stabilised on a flat porous burner under normal conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> bar, T = 20 °C). The experimental data are compared with numerical calculations within the detailed reaction mechanism GRI3.0 and both approaches confirm the linear correlation between mass flow rate and inverse flame temperature predicted in the theory. An analysis of the numerical and experimental data shows that, in the limit of lean hydrogen–methane–air mixtures, the activation energy approaches a constant value, which is not sensitive to the addition of hydrogen to methane. The mass flow rate for a freely propagating flame and, thus, the laminar burning velocity, are measured for mixtures with different hydrogen contents. This mass flow rate, scaled over the characteristic temperature dependence of the laminar burning velocity for a one-step reaction mechanism, is found and it can also be used in order to estimate the parameters of the overall reaction mechanisms. Such reaction mechanisms will find implementation in the numerical simulation of practical combustion devices with complex flows and geometries. |
first_indexed | 2024-03-07T22:33:58Z |
format | Article |
id | doaj.art-cda3674fe7964b5d93a2fc12a0cf75ee |
institution | Directory Open Access Journal |
issn | 2571-6255 |
language | English |
last_indexed | 2024-03-07T22:33:58Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Fire |
spelling | doaj.art-cda3674fe7964b5d93a2fc12a0cf75ee2024-02-23T15:16:01ZengMDPI AGFire2571-62552024-01-01724210.3390/fire7020042Activation Energy of Hydrogen–Methane MixturesAnastasia Moroshkina0Alina Ponomareva1Vladimir Mislavskii2Evgeniy Sereshchenko3Vladimir Gubernov4Viatcheslav Bykov5Sergey Minaev6P.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaThe Center for Chemical Engineering, ITMO University, 49 Kronverksky Prosp., St. Petersburg 197101, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaKarlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Strasse 4, Building 10.91, D-76131 Karlsruhe, GermanyP.N. Lebedev Physical Institute of Russian Academy of Sciences, 53 Leninskii Prosp., Moscow 119991, RussiaIn this work, the overall activation energy of the combustion of lean hydrogen–methane–air mixtures (equivalence ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula> = 0.7−1.0 and hydrogen fraction in methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, 2, 4) is experimentally determined using thin-filament pyrometry of flames stabilised on a flat porous burner under normal conditions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> bar, T = 20 °C). The experimental data are compared with numerical calculations within the detailed reaction mechanism GRI3.0 and both approaches confirm the linear correlation between mass flow rate and inverse flame temperature predicted in the theory. An analysis of the numerical and experimental data shows that, in the limit of lean hydrogen–methane–air mixtures, the activation energy approaches a constant value, which is not sensitive to the addition of hydrogen to methane. The mass flow rate for a freely propagating flame and, thus, the laminar burning velocity, are measured for mixtures with different hydrogen contents. This mass flow rate, scaled over the characteristic temperature dependence of the laminar burning velocity for a one-step reaction mechanism, is found and it can also be used in order to estimate the parameters of the overall reaction mechanisms. Such reaction mechanisms will find implementation in the numerical simulation of practical combustion devices with complex flows and geometries.https://www.mdpi.com/2571-6255/7/2/42activation energyhydrogen–methane–air flamehydrogen dilutionflat burnerdetailed reaction mechanismthin filament pyrometry |
spellingShingle | Anastasia Moroshkina Alina Ponomareva Vladimir Mislavskii Evgeniy Sereshchenko Vladimir Gubernov Viatcheslav Bykov Sergey Minaev Activation Energy of Hydrogen–Methane Mixtures Fire activation energy hydrogen–methane–air flame hydrogen dilution flat burner detailed reaction mechanism thin filament pyrometry |
title | Activation Energy of Hydrogen–Methane Mixtures |
title_full | Activation Energy of Hydrogen–Methane Mixtures |
title_fullStr | Activation Energy of Hydrogen–Methane Mixtures |
title_full_unstemmed | Activation Energy of Hydrogen–Methane Mixtures |
title_short | Activation Energy of Hydrogen–Methane Mixtures |
title_sort | activation energy of hydrogen methane mixtures |
topic | activation energy hydrogen–methane–air flame hydrogen dilution flat burner detailed reaction mechanism thin filament pyrometry |
url | https://www.mdpi.com/2571-6255/7/2/42 |
work_keys_str_mv | AT anastasiamoroshkina activationenergyofhydrogenmethanemixtures AT alinaponomareva activationenergyofhydrogenmethanemixtures AT vladimirmislavskii activationenergyofhydrogenmethanemixtures AT evgeniysereshchenko activationenergyofhydrogenmethanemixtures AT vladimirgubernov activationenergyofhydrogenmethanemixtures AT viatcheslavbykov activationenergyofhydrogenmethanemixtures AT sergeyminaev activationenergyofhydrogenmethanemixtures |