Summary: | Hesitant fuzzy sets extend fuzzy sets by considering many-valued sets of membership degrees. Real applications validate this model and decision making approaches of various forms permit to act in a flexible manner. If we can avail ourselves of hesitant information on non-membership degrees too, then dual hesitant fuzzy sets provide a natural extension of both hesitant fuzzy sets and intuitionistic fuzzy sets. This article defines the concept of dual extended hesitant fuzzy set as the combination of extended hesitant fuzzy sets with dual hesitant fuzzy sets. Its basic algebraic properties are set forth, and the model is linked to other successful models in the literature. We also define a comparison law for the prioritization of elements described in this new framework. Moreover, we present an algorithm to solve the dual extended hesitant fuzzy decision making problem by a weight score function. Finally, the feasibility of this approach is demonstrated by the evaluation of big data industries with an effectiveness test.
|