Application of Convolutional Recurrent Neural Network for Individual Recognition Based on Resting State fMRI Data

In most task and resting state fMRI studies, a group consensus is often sought, where individual variability is considered a nuisance. None the less, biological variability is an important factor that cannot be ignored and is gaining more attention in the field. One recent development is the individ...

Full description

Bibliographic Details
Main Authors: Lebo Wang, Kaiming Li, Xu Chen, Xiaoping P. Hu
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-05-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnins.2019.00434/full
Description
Summary:In most task and resting state fMRI studies, a group consensus is often sought, where individual variability is considered a nuisance. None the less, biological variability is an important factor that cannot be ignored and is gaining more attention in the field. One recent development is the individual identification based on static functional connectome. While the original work was based on the static connectome, subsequent efforts using recurrent neural networks (RNN) demonstrated that the inclusion of temporal features greatly improved identification accuracy. Given that convolutional RNN (ConvRNN) seamlessly integrates spatial and temporal features, the present work applied ConvRNN for individual identification with resting state fMRI data. Our result demonstrates ConvRNN achieving a higher identification accuracy than conventional RNN, likely due to better extraction of local features between neighboring ROIs. Furthermore, given that each convolutional output assembles in-place features, they provide a natural way for us to visualize the informative spatial pattern and temporal information, opening up a promising new avenue for analyzing fMRI data.
ISSN:1662-453X