Estudio de una familia de funciones de periodo tres y su dinámica caótica

Objetivo - construir sistemas dinámicos caóticos unidimensionales mediante el estudio de una familia de funciones con dominio y contradominio en el intervalo 0,1 la cual se define en términos de cuatro parámetros. Método - con base a los parámetros que definen a cada función que proponemos, se ide...

Full description

Bibliographic Details
Main Authors: Julio César Macías Ponce, Luis Fernando Martínez Álvarez
Format: Article
Language:English
Published: Universidad Nacional Autónoma de México 2019-01-01
Series:Entreciencias: Diálogos en la Sociedad del Conocimiento
Subjects:
Online Access:http://www.redalyc.org/articulo.oa?id=457658021004
Description
Summary:Objetivo - construir sistemas dinámicos caóticos unidimensionales mediante el estudio de una familia de funciones con dominio y contradominio en el intervalo 0,1 la cual se define en términos de cuatro parámetros. Método - con base a los parámetros que definen a cada función que proponemos, se identificaron aquellas que tienen periodo tres, las cuales inducen un sistema caótico en el contexto de Li-Yorke. Los teoremas del punto fijo y de Sharkovskii fueron la herramienta fundamental de nuestro trabajo. Resultados - se obtuvo un conjunto de sistemas dinámicos caóticos, se describió un procedimiento sencillo para obtener sistemas dinámicos caóticos (adicionales a los obtenidos) y se sugiere como primera aplicación la obtención de números pseudoaleatorios. Limitaciones - los sistemas dinámicos construidos son caóticos en el sentido de Li-Yorke, -no necesariamente en el sentido de Devaney. Principales hallazgos - las funciones estudiadas tienen una gráfica en forma de Zeta, y para cada una de ellas se identifica a su respectiva dual (las gráficas que se obtienen presentan una relación de simetría), de esta manera se muestran las condiciones que deben verificar los parámetros -primal y dual- para obtener (y no obtener) período tres.
ISSN:2007-8064