Fuzzy b-Metric Spaces: Fixed Point Results for <em>ψ</em>-Contraction Correspondences and Their Application
In this paper we introduce the concepts of <inline-formula> <math display="inline"> <semantics> <mi>ψ</mi> </semantics> </math> </inline-formula>-contraction and monotone <inline-formula> <math display="inline"> <sema...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/9/2/36 |
Summary: | In this paper we introduce the concepts of <inline-formula> <math display="inline"> <semantics> <mi>ψ</mi> </semantics> </math> </inline-formula>-contraction and monotone <inline-formula> <math display="inline"> <semantics> <mi>ψ</mi> </semantics> </math> </inline-formula>-contraction correspondence in “fuzzy <inline-formula> <math display="inline"> <semantics> <mi mathvariant="fraktur">b</mi> </semantics> </math> </inline-formula>-metric spaces” and obtain fixed point results for these contractive mappings. The obtained results generalize some existing ones in fuzzy metric spaces and “fuzzy <inline-formula> <math display="inline"> <semantics> <mi mathvariant="fraktur">b</mi> </semantics> </math> </inline-formula>-metric spaces”. Further we address an open problem in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="fraktur">b</mi> </semantics> </math> </inline-formula>-metric and “fuzzy <inline-formula> <math display="inline"> <semantics> <mi mathvariant="fraktur">b</mi> </semantics> </math> </inline-formula>-metric spaces”. To elaborate the results obtained herein we provide an example that shows the usability of the obtained results. |
---|---|
ISSN: | 2075-1680 |