Bounds for Eigenvalues of <i>q</i>-Laplacian on Contact Submanifolds of Sasakian Space Forms

This study establishes new upper bounds for the mean curvature and constant sectional curvature on Riemannian manifolds for the first positive eigenvalue of the <i>q</i>-Laplacian. In particular, various estimates are provided for the first eigenvalue of the <i>q</i>-Laplace...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Fatemah Mofarreh, Abimbola Abolarinwa, Norah Alshehri, Akram Ali
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/23/4717
Description
Summary:This study establishes new upper bounds for the mean curvature and constant sectional curvature on Riemannian manifolds for the first positive eigenvalue of the <i>q</i>-Laplacian. In particular, various estimates are provided for the first eigenvalue of the <i>q</i>-Laplace operator on closed orientated <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>-dimensional special contact slant submanifolds in a Sasakian space form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mover accent="true"><mi mathvariant="double-struck">M</mi><mo>˜</mo></mover><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, with a constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ψ</mi><mn>1</mn></msub></semantics></math></inline-formula>-sectional curvature, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>. From our main results, we recovered the Reilly-type inequalities, which were proven before this study.
ISSN:2227-7390