URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution

It is extremely important and necessary for low computing power or portable devices to design more lightweight algorithms for image super-resolution (SR). Recently, most SR methods have achieved outstanding performance by sacrificing computational cost and memory storage, or vice versa. To address t...

Full description

Bibliographic Details
Main Authors: Yuntao Wang, Lin Zhao, Liman Liu, Huaifei Hu, Wenbing Tao
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/19/3848
Description
Summary:It is extremely important and necessary for low computing power or portable devices to design more lightweight algorithms for image super-resolution (SR). Recently, most SR methods have achieved outstanding performance by sacrificing computational cost and memory storage, or vice versa. To address this problem, we introduce a lightweight U-shaped residual network (URNet) for fast and accurate image SR. Specifically, we propose a more effective feature distillation pyramid residual group (FDPRG) to extract features from low-resolution images. The FDPRG can effectively reuse the learned features with dense shortcuts and capture multi-scale information with a cascaded feature pyramid block. Based on the U-shaped structure, we utilize a step-by-step fusion strategy to improve the performance of feature fusion of different blocks. This strategy is different from the general SR methods which only use a single <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>a</mi><mi>t</mi></mrow></semantics></math></inline-formula> operation to fuse the features of all basic blocks. Moreover, a lightweight asymmetric residual non-local block is proposed to model the global context information and further improve the performance of SR. Finally, a high-frequency loss function is designed to alleviate smoothing image details caused by pixel-wise loss. Simultaneously, the proposed modules and high-frequency loss function can be easily plugged into multiple mature architectures to improve the performance of SR. Extensive experiments on multiple natural image datasets and remote sensing image datasets show the URNet achieves a better trade-off between image SR performance and model complexity against other state-of-the-art SR methods.
ISSN:2072-4292