Antiviral Decoction of Isatidis Radix (板藍根 bǎn lán gēn) Inhibited Influenza Virus Adsorption on MDCK Cells by Cytoprotective Activity

The aim of this study is to elucidate how the Isatidis Radix (板藍根 bǎn lán gēn) tonic, as an aqueous mixture of hundreds of compositions, interrupts the infection of influenza viruses to their host cells. The efficacy of the tonic was evaluated and expressed as cell proliferation rate and plaque redu...

Full description

Bibliographic Details
Main Authors: Lijing Ke, Teng Wen, Jeremy P. Bradshaw, Jianwu Zhou, Pingfan Rao
Format: Article
Language:English
Published: Elsevier 2012-01-01
Series:Journal of Traditional and Complementary Medicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2225411016300700
Description
Summary:The aim of this study is to elucidate how the Isatidis Radix (板藍根 bǎn lán gēn) tonic, as an aqueous mixture of hundreds of compositions, interrupts the infection of influenza viruses to their host cells. The efficacy of the tonic was evaluated and expressed as cell proliferation rate and plaque reduction rate in Madin-Darby Canine Kidney (MDCK) cells, against 3 strains of influenza A and B viruses. This boiling water (at 100 °C) extract of Isatidis Radix (RIE) showed antiviral activity against influenza virus A and B. The concentration for 50% inhibition of influenza virus A replication (IC50) in MDCK cell was 12.6 mg/mL with a therapeutic index >8. When cells were incubated with RIE prior to virus adsorption, the numbers of viable cell were at least doubled compared to the numbers of virus control, RIE incubation after virus adsorption and RIE incubation with virus prior to adsorption, in both influenza virus A and B. Moreover, much less virus particles were spotted by scanning electron microscope (SEM) in the RIE pre-treated cells than the cells without RIE treatment. These results indicate the antiviral activity of RIE is mainly attributed to its host cell protection effect but not actions on virus or post-virus-adsorption interruption. Cell, but not virus, is more likely to be the action target of RIE.
ISSN:2225-4110