Spectrum of one dimensional p-Laplacian operator with indefinite weight

This paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a uni...

Full description

Bibliographic Details
Main Authors: Mohammed Moussa, A. Anane, Omar Chakrone
Format: Article
Language:English
Published: University of Szeged 2002-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=143
Description
Summary:This paper is concerned with the nonlinear boundary eigenvalue problem $$-(|u'|^{p-2}u')'=\lambda m|u|^{p-2}u\qquad u \in I=]a,b[,\quad u(a)=u(b)=0,$$ where $p>1$, $\lambda$ is a real parameter, $m$ is an indefinite weight, and $a$, $b$ are real numbers. We prove there exists a unique sequence of eigenvalues for this problem. Each eigenvalue is simple and verifies the strict monotonicity property with respect to the weight $m$ and the domain $I$, the k-th eigenfunction, corresponding to the $k$-th eigenvalue, has exactly $k-1$ zeros in $(a,b)$. At the end, we give a simple variational formulation of eigenvalues.
ISSN:1417-3875