Improving the Efficiency of Carbon-Based Perovskite Solar Cells with Passivation of Electron Transport Layer

Among perovskite solar cells (PSCs), carbon-based perovskite solar cells (C-PSCs) are regarded as one of the best advantageous designs centered on a number of desirable characteristics, such as outstanding scalability, long-term stability, and cost-effectiveness. In these C-PSCs, titanium oxide (TiO...

Full description

Bibliographic Details
Main Authors: Sania Khan, Adnan Daud Khan, Muhammad Noman
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/45/1/36
Description
Summary:Among perovskite solar cells (PSCs), carbon-based perovskite solar cells (C-PSCs) are regarded as one of the best advantageous designs centered on a number of desirable characteristics, such as outstanding scalability, long-term stability, and cost-effectiveness. In these C-PSCs, titanium oxide (TiO<sub>2</sub>) has usually been utilized as the electron transport layer (ETL) because of its simplicity in preparation and low cost. In these hole transport layer-free C-PSCs, the quality of ETLs is essential for the high performance of PSCs. In this paper, we used TiCl<sub>4</sub> post-treatment for the passivation of the titania layer (TiO<sub>2</sub>) to improve the quality of ETL. Consequently, after passivation, the charge recombination has been reduced, the efficiency increased from 3.15% to 4.16%, and resulted in a 32.06% improvement in power conversion efficiency (PCE).
ISSN:2673-4591