Contributions of Artificial Intelligence Reported in Obstetrics and Gynecology Journals: Systematic Review

BackgroundThe applications of artificial intelligence (AI) processes have grown significantly in all medical disciplines during the last decades. Two main types of AI have been applied in medicine: symbolic AI (eg, knowledge base and ontologies) and nonsymbolic AI (eg, machin...

Full description

Bibliographic Details
Main Authors: Ferdinand Dhombres, Jules Bonnard, Kévin Bailly, Paul Maurice, Aris T Papageorghiou, Jean-Marie Jouannic
Format: Article
Language:English
Published: JMIR Publications 2022-04-01
Series:Journal of Medical Internet Research
Online Access:https://www.jmir.org/2022/4/e35465
Description
Summary:BackgroundThe applications of artificial intelligence (AI) processes have grown significantly in all medical disciplines during the last decades. Two main types of AI have been applied in medicine: symbolic AI (eg, knowledge base and ontologies) and nonsymbolic AI (eg, machine learning and artificial neural networks). Consequently, AI has also been applied across most obstetrics and gynecology (OB/GYN) domains, including general obstetrics, gynecology surgery, fetal ultrasound, and assisted reproductive medicine, among others. ObjectiveThe aim of this study was to provide a systematic review to establish the actual contributions of AI reported in OB/GYN discipline journals. MethodsThe PubMed database was searched for citations indexed with “artificial intelligence” and at least one of the following medical subject heading (MeSH) terms between January 1, 2000, and April 30, 2020: “obstetrics”; “gynecology”; “reproductive techniques, assisted”; or “pregnancy.” All publications in OB/GYN core disciplines journals were considered. The selection of journals was based on disciplines defined in Web of Science. The publications were excluded if no AI process was used in the study. Review, editorial, and commentary articles were also excluded. The study analysis comprised (1) classification of publications into OB/GYN domains, (2) description of AI methods, (3) description of AI algorithms, (4) description of data sets, (5) description of AI contributions, and (6) description of the validation of the AI process. ResultsThe PubMed search retrieved 579 citations and 66 publications met the selection criteria. All OB/GYN subdomains were covered: obstetrics (41%, 27/66), gynecology (3%, 2/66), assisted reproductive medicine (33%, 22/66), early pregnancy (2%, 1/66), and fetal medicine (21%, 14/66). Both machine learning methods (39/66) and knowledge base methods (25/66) were represented. Machine learning used imaging, numerical, and clinical data sets. Knowledge base methods used mostly omics data sets. The actual contributions of AI were method/algorithm development (53%, 35/66), hypothesis generation (42%, 28/66), or software development (3%, 2/66). Validation was performed on one data set (86%, 57/66) and no external validation was reported. We observed a general rising trend in publications related to AI in OB/GYN over the last two decades. Most of these publications (82%, 54/66) remain out of the scope of the usual OB/GYN journals. ConclusionsIn OB/GYN discipline journals, mostly preliminary work (eg, proof-of-concept algorithm or method) in AI applied to this discipline is reported and clinical validation remains an unmet prerequisite. Improvement driven by new AI research guidelines is expected. However, these guidelines are covering only a part of AI approaches (nonsymbolic) reported in this review; hence, updates need to be considered.
ISSN:1438-8871