TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation.
Mechanical ventilation is an important tool for supporting critically ill patients but may also exert pathological forces on lung cells leading to Ventilator-Induced Lung Injury (VILI). We hypothesised that inhibition of the force-sensitive transient receptor potential vanilloid (TRPV4) ion channel...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5903668?pdf=render |
_version_ | 1811211931020689408 |
---|---|
author | N Pairet S Mang G Fois M Keck M Kühnbach J Gindele M Frick P Dietl D J Lamb |
author_facet | N Pairet S Mang G Fois M Keck M Kühnbach J Gindele M Frick P Dietl D J Lamb |
author_sort | N Pairet |
collection | DOAJ |
description | Mechanical ventilation is an important tool for supporting critically ill patients but may also exert pathological forces on lung cells leading to Ventilator-Induced Lung Injury (VILI). We hypothesised that inhibition of the force-sensitive transient receptor potential vanilloid (TRPV4) ion channel may attenuate the negative effects of mechanical ventilation. Mechanical stretch increased intracellular Ca2+ influx and induced release of pro-inflammatory cytokines in lung epithelial cells that was partially blocked by about 30% with the selective TRPV4 inhibitor GSK2193874, but nearly completely blocked with the pan-calcium channel blocker ruthenium red, suggesting the involvement of more than one calcium channel in the response to mechanical stress. Mechanical stretch also induced the release of pro-inflammatory cytokines from M1 macrophages, but in contrast this was entirely dependent upon TRPV4. In a murine ventilation model, TRPV4 inhibition attenuated both pulmonary barrier permeability increase and pro-inflammatory cytokines release due to high tidal volume ventilation. Taken together, these data suggest TRPV4 inhibitors may have utility as a prophylactic pharmacological treatment to improve the negative pathological stretch-response of lung cells during ventilation and potentially support patients receiving mechanical ventilation. |
first_indexed | 2024-04-12T05:20:33Z |
format | Article |
id | doaj.art-ce0728c42c87460082209585a1bf36ab |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-12T05:20:33Z |
publishDate | 2018-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-ce0728c42c87460082209585a1bf36ab2022-12-22T03:46:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01134e019605510.1371/journal.pone.0196055TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation.N PairetS MangG FoisM KeckM KühnbachJ GindeleM FrickP DietlD J LambMechanical ventilation is an important tool for supporting critically ill patients but may also exert pathological forces on lung cells leading to Ventilator-Induced Lung Injury (VILI). We hypothesised that inhibition of the force-sensitive transient receptor potential vanilloid (TRPV4) ion channel may attenuate the negative effects of mechanical ventilation. Mechanical stretch increased intracellular Ca2+ influx and induced release of pro-inflammatory cytokines in lung epithelial cells that was partially blocked by about 30% with the selective TRPV4 inhibitor GSK2193874, but nearly completely blocked with the pan-calcium channel blocker ruthenium red, suggesting the involvement of more than one calcium channel in the response to mechanical stress. Mechanical stretch also induced the release of pro-inflammatory cytokines from M1 macrophages, but in contrast this was entirely dependent upon TRPV4. In a murine ventilation model, TRPV4 inhibition attenuated both pulmonary barrier permeability increase and pro-inflammatory cytokines release due to high tidal volume ventilation. Taken together, these data suggest TRPV4 inhibitors may have utility as a prophylactic pharmacological treatment to improve the negative pathological stretch-response of lung cells during ventilation and potentially support patients receiving mechanical ventilation.http://europepmc.org/articles/PMC5903668?pdf=render |
spellingShingle | N Pairet S Mang G Fois M Keck M Kühnbach J Gindele M Frick P Dietl D J Lamb TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. PLoS ONE |
title | TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. |
title_full | TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. |
title_fullStr | TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. |
title_full_unstemmed | TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. |
title_short | TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. |
title_sort | trpv4 inhibition attenuates stretch induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation |
url | http://europepmc.org/articles/PMC5903668?pdf=render |
work_keys_str_mv | AT npairet trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT smang trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT gfois trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT mkeck trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT mkuhnbach trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT jgindele trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT mfrick trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT pdietl trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation AT djlamb trpv4inhibitionattenuatesstretchinducedinflammatorycellularresponsesandlungbarrierdysfunctionduringmechanicalventilation |