Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer
Here we report the measurement of the comprehensive isotopic composition (δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O) of nitrate at the air–snow interface at Dome C, Antarctica (DC, 75°06' S, 123°19' E), and in snow pits alo...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2013-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/13/6403/2013/acp-13-6403-2013.pdf |
_version_ | 1828422920737652736 |
---|---|
author | J. Erbland W. C. Vicars J. Savarino S. Morin M. M. Frey D. Frosini E. Vince J. M. F. Martins |
author_facet | J. Erbland W. C. Vicars J. Savarino S. Morin M. M. Frey D. Frosini E. Vince J. M. F. Martins |
author_sort | J. Erbland |
collection | DOAJ |
description | Here we report the measurement of the comprehensive isotopic composition (δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O) of nitrate at the air–snow interface at Dome C, Antarctica (DC, 75°06' S, 123°19' E), and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. In most of the snow pits, nitrate loss (either by physical release or UV photolysis of nitrate) is observed and fractionation constants associated are calculated. Nitrate collected from snow pits on the plateau (snow accumulation rate below 50 kg m<sup>−2</sup> a<sup>−1</sup>) displays average fractionation constants of (−59±10) ‰, (+2.0±1.0) ‰ and (+8.7±2.4)‰ for δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average fractionation constants of (−16±14) ‰, (−0.2±1.5) ‰ and (+3.1±5.8) ‰, for δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O, respectively. Our observations corroborate that photolysis (associated with a <sup>15</sup>N / <sup>14</sup>N fractionation constant of the order of –48 ‰ according to Frey et al. (2009) is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a~close relationship between the Δ<sup>17</sup>O of atmospheric nitrate and Δ<sup>17</sup>O of nitrate in skin layer snow, suggesting a photolytically driven isotopic equilibrium imposed by nitrate recycling at this interface. Atmospheric nitrate deposition may lead to fractionation of the nitrogen isotopes and explain the almost constant shift of the order of 25 ‰ between the δ<sup>15</sup>N values in the atmospheric and skin layer nitrate at DC. Asymptotic δ<sup>15</sup>N(NO<sub>3</sub><sup>−</sup>) values calculated for each snow pit are found to be correlated with the inverse of the snow accumulation rate (ln(δ<sup>15</sup>N as. + 1) = (5.76±0.47) ċ (kg m<sup>−2</sup> a<sup>−1</sup>/ <i>A</i>) + (0.01±0.02)), confirming the strong relationship between the snow accumulation rate and the degree of isotopic fractionation, consistent with previous observations by Freyer et al. (1996). Asymptotic Δ<sup>17</sup>O(NO<sub>3</sub><sup>−</sup>) values on the plateau are smaller than the values found in the skin layer most likely due to oxygen isotope exchange between the nitrate photoproducts and water molecules from the surrounding ice. However, the apparent fractionation in Δ<sup>17</sup>O is small, thus allowing the preservation of a portion of the atmospheric signal. |
first_indexed | 2024-12-10T15:53:48Z |
format | Article |
id | doaj.art-ce0c6cde4e1c45cbab7e3c3d54cf3903 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-10T15:53:48Z |
publishDate | 2013-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-ce0c6cde4e1c45cbab7e3c3d54cf39032022-12-22T01:42:43ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-07-0113136403641910.5194/acp-13-6403-2013Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summerJ. ErblandW. C. VicarsJ. SavarinoS. MorinM. M. FreyD. FrosiniE. VinceJ. M. F. MartinsHere we report the measurement of the comprehensive isotopic composition (δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O) of nitrate at the air–snow interface at Dome C, Antarctica (DC, 75°06' S, 123°19' E), and in snow pits along a transect across the East Antarctic Ice Sheet (EAIS) between 66° S and 78° S. In most of the snow pits, nitrate loss (either by physical release or UV photolysis of nitrate) is observed and fractionation constants associated are calculated. Nitrate collected from snow pits on the plateau (snow accumulation rate below 50 kg m<sup>−2</sup> a<sup>−1</sup>) displays average fractionation constants of (−59±10) ‰, (+2.0±1.0) ‰ and (+8.7±2.4)‰ for δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O, respectively. In contrast, snow pits sampled on the coast show distinct isotopic signatures with average fractionation constants of (−16±14) ‰, (−0.2±1.5) ‰ and (+3.1±5.8) ‰, for δ<sup>15</sup>N, Δ<sup>17</sup>O and δ<sup>18</sup>O, respectively. Our observations corroborate that photolysis (associated with a <sup>15</sup>N / <sup>14</sup>N fractionation constant of the order of –48 ‰ according to Frey et al. (2009) is the dominant nitrate loss process on the East Antarctic Plateau, while on the coast the loss is less pronounced and could involve both physical release and photochemical processes. Year-round isotopic measurements at DC show a~close relationship between the Δ<sup>17</sup>O of atmospheric nitrate and Δ<sup>17</sup>O of nitrate in skin layer snow, suggesting a photolytically driven isotopic equilibrium imposed by nitrate recycling at this interface. Atmospheric nitrate deposition may lead to fractionation of the nitrogen isotopes and explain the almost constant shift of the order of 25 ‰ between the δ<sup>15</sup>N values in the atmospheric and skin layer nitrate at DC. Asymptotic δ<sup>15</sup>N(NO<sub>3</sub><sup>−</sup>) values calculated for each snow pit are found to be correlated with the inverse of the snow accumulation rate (ln(δ<sup>15</sup>N as. + 1) = (5.76±0.47) ċ (kg m<sup>−2</sup> a<sup>−1</sup>/ <i>A</i>) + (0.01±0.02)), confirming the strong relationship between the snow accumulation rate and the degree of isotopic fractionation, consistent with previous observations by Freyer et al. (1996). Asymptotic Δ<sup>17</sup>O(NO<sub>3</sub><sup>−</sup>) values on the plateau are smaller than the values found in the skin layer most likely due to oxygen isotope exchange between the nitrate photoproducts and water molecules from the surrounding ice. However, the apparent fractionation in Δ<sup>17</sup>O is small, thus allowing the preservation of a portion of the atmospheric signal.http://www.atmos-chem-phys.net/13/6403/2013/acp-13-6403-2013.pdf |
spellingShingle | J. Erbland W. C. Vicars J. Savarino S. Morin M. M. Frey D. Frosini E. Vince J. M. F. Martins Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer Atmospheric Chemistry and Physics |
title | Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer |
title_full | Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer |
title_fullStr | Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer |
title_full_unstemmed | Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer |
title_short | Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer |
title_sort | air snow transfer of nitrate on the east antarctic plateau ndash part 1 isotopic evidence for a photolytically driven dynamic equilibrium in summer |
url | http://www.atmos-chem-phys.net/13/6403/2013/acp-13-6403-2013.pdf |
work_keys_str_mv | AT jerbland airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT wcvicars airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT jsavarino airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT smorin airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT mmfrey airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT dfrosini airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT evince airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer AT jmfmartins airsnowtransferofnitrateontheeastantarcticplateaundashpart1isotopicevidenceforaphotolyticallydrivendynamicequilibriuminsummer |