A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法)
高阶对流Cahn-Hilliard型方程是一类空间六阶且具有四阶非线性项的发展方程。首先,给出了线性化差分格式,其第一时间层为2层隐式差分格式,其余时间层为3层隐式差分格式。其次,在差分格式建立过程中,利用中心差商对四阶非线性项进行离散,证明了差分格式解的唯一性和收敛性,并得到其在时间和空间上的收敛阶均为二阶。最后,通过数值算例,验证了差分格式的有效性。...
Main Author: | |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2022-01-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2022.01.009 |
_version_ | 1827302879170396160 |
---|---|
author | LIJuan(李娟) |
author_facet | LIJuan(李娟) |
author_sort | LIJuan(李娟) |
collection | DOAJ |
description | 高阶对流Cahn-Hilliard型方程是一类空间六阶且具有四阶非线性项的发展方程。首先,给出了线性化差分格式,其第一时间层为2层隐式差分格式,其余时间层为3层隐式差分格式。其次,在差分格式建立过程中,利用中心差商对四阶非线性项进行离散,证明了差分格式解的唯一性和收敛性,并得到其在时间和空间上的收敛阶均为二阶。最后,通过数值算例,验证了差分格式的有效性。 |
first_indexed | 2024-04-24T16:52:37Z |
format | Article |
id | doaj.art-ce3e63cae8e1481d82fb9cf70c1be202 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:52:37Z |
publishDate | 2022-01-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-ce3e63cae8e1481d82fb9cf70c1be2022024-03-29T01:58:40ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972022-01-01491606510.3785/j.issn.1008-9497.2022.01.009A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法)LIJuan(李娟)0https://orcid.org/0000-0003-1815-5708Department of Basis Course, Nanjing Audit University Jinshen College, Nanjing 210023, China(南京审计大学金审学院 基础部,江苏 南京 210023)高阶对流Cahn-Hilliard型方程是一类空间六阶且具有四阶非线性项的发展方程。首先,给出了线性化差分格式,其第一时间层为2层隐式差分格式,其余时间层为3层隐式差分格式。其次,在差分格式建立过程中,利用中心差商对四阶非线性项进行离散,证明了差分格式解的唯一性和收敛性,并得到其在时间和空间上的收敛阶均为二阶。最后,通过数值算例,验证了差分格式的有效性。https://doi.org/10.3785/j.issn.1008-9497.2022.01.009高阶对流cahn-hilliard型方程线性化差分格式唯一性收敛性非线性问题线性化 |
spellingShingle | LIJuan(李娟) A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) Zhejiang Daxue xuebao. Lixue ban 高阶对流cahn-hilliard型方程 线性化差分格式 唯一性 收敛性 非线性问题 线性化 |
title | A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) |
title_full | A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) |
title_fullStr | A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) |
title_full_unstemmed | A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) |
title_short | A second-order linearized finite difference method for a higher order convective Cahn-Hilliard type equation(高阶对流Cahn-Hilliard型方程的二阶线性化差分方法) |
title_sort | second order linearized finite difference method for a higher order convective cahn hilliard type equation 高阶对流cahn hilliard型方程的二阶线性化差分方法 |
topic | 高阶对流cahn-hilliard型方程 线性化差分格式 唯一性 收敛性 非线性问题 线性化 |
url | https://doi.org/10.3785/j.issn.1008-9497.2022.01.009 |
work_keys_str_mv | AT lijuanlǐjuān asecondorderlinearizedfinitedifferencemethodforahigherorderconvectivecahnhilliardtypeequationgāojiēduìliúcahnhilliardxíngfāngchéngdeèrjiēxiànxìnghuàchàfēnfāngfǎ AT lijuanlǐjuān secondorderlinearizedfinitedifferencemethodforahigherorderconvectivecahnhilliardtypeequationgāojiēduìliúcahnhilliardxíngfāngchéngdeèrjiēxiànxìnghuàchàfēnfāngfǎ |