The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity

We sketch the main features of the Noether Symmetry Approach, a method to reduce and solve dynamics of physical systems by selecting Noether symmetries, which correspond to conserved quantities. Specifically, we take into account the vanishing Lie derivative condition for general canonical Lagrangia...

Full description

Bibliographic Details
Main Authors: Francesco Bajardi, Salvatore Capozziello, Tiziana Di Salvo, Francesca Spinnato
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/9/1625
_version_ 1797576653838221312
author Francesco Bajardi
Salvatore Capozziello
Tiziana Di Salvo
Francesca Spinnato
author_facet Francesco Bajardi
Salvatore Capozziello
Tiziana Di Salvo
Francesca Spinnato
author_sort Francesco Bajardi
collection DOAJ
description We sketch the main features of the Noether Symmetry Approach, a method to reduce and solve dynamics of physical systems by selecting Noether symmetries, which correspond to conserved quantities. Specifically, we take into account the vanishing Lie derivative condition for general canonical Lagrangians to select symmetries. Furthermore, we extend the prescription to the first prolongation of the Noether vector. It is possible to show that the latter application provides a general constraint on the infinitesimal generator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, related to the spacetime translations. This approach can be used for several applications. In the second part of the work, we consider a gravity theory, including the coupling between a scalar field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and the Gauss–Bonnet topological term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. In particular, we study a gravitational action containing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi mathvariant="script">G</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and select viable models by the existence of symmetries. Finally, we evaluate the selected models in a spatially flat cosmological background and use symmetries to find exact solutions.
first_indexed 2024-03-10T21:54:54Z
format Article
id doaj.art-ce3f394a4dde4f1a93594e4f7a48312c
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T21:54:54Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-ce3f394a4dde4f1a93594e4f7a48312c2023-11-19T13:10:23ZengMDPI AGSymmetry2073-89942023-08-01159162510.3390/sym15091625The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet GravityFrancesco Bajardi0Salvatore Capozziello1Tiziana Di Salvo2Francesca Spinnato3Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, ItalyScuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, ItalyDipartimento di Fisica e Chimica “Emilio Segré”, Università degli Studi di Palermo, 90123 Palermo, ItalyDipartimento di Fisica e Chimica “Emilio Segré”, Università degli Studi di Palermo, 90123 Palermo, ItalyWe sketch the main features of the Noether Symmetry Approach, a method to reduce and solve dynamics of physical systems by selecting Noether symmetries, which correspond to conserved quantities. Specifically, we take into account the vanishing Lie derivative condition for general canonical Lagrangians to select symmetries. Furthermore, we extend the prescription to the first prolongation of the Noether vector. It is possible to show that the latter application provides a general constraint on the infinitesimal generator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, related to the spacetime translations. This approach can be used for several applications. In the second part of the work, we consider a gravity theory, including the coupling between a scalar field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and the Gauss–Bonnet topological term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. In particular, we study a gravitational action containing the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi mathvariant="script">G</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula> and select viable models by the existence of symmetries. Finally, we evaluate the selected models in a spatially flat cosmological background and use symmetries to find exact solutions.https://www.mdpi.com/2073-8994/15/9/1625Noether symmetriesmodified theories of gravityexact solutions
spellingShingle Francesco Bajardi
Salvatore Capozziello
Tiziana Di Salvo
Francesca Spinnato
The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
Symmetry
Noether symmetries
modified theories of gravity
exact solutions
title The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
title_full The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
title_fullStr The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
title_full_unstemmed The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
title_short The Noether Symmetry Approach: Foundation and Applications: The Case of Scalar-Tensor Gauss–Bonnet Gravity
title_sort noether symmetry approach foundation and applications the case of scalar tensor gauss bonnet gravity
topic Noether symmetries
modified theories of gravity
exact solutions
url https://www.mdpi.com/2073-8994/15/9/1625
work_keys_str_mv AT francescobajardi thenoethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT salvatorecapozziello thenoethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT tizianadisalvo thenoethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT francescaspinnato thenoethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT francescobajardi noethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT salvatorecapozziello noethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT tizianadisalvo noethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity
AT francescaspinnato noethersymmetryapproachfoundationandapplicationsthecaseofscalartensorgaussbonnetgravity