Mapping alterations in the local synchrony of the cerebral cortex in schizophrenia

Abstract Background Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expre...

Full description

Bibliographic Details
Main Authors: Jesus Pujol, Nuria Pujol, Anna Mané, Gerard Martínez-Vilavella, Joan Deus, Víctor Pérez-Sola, Laura Blanco-Hinojo
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:European Psychiatry
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S092493382302463X/type/journal_article
Description
Summary:Abstract Background Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expressed in the form of neural activity desynchronization. We mapped the functional anatomy of local synchrony in the cerebral cortex in schizophrenia using functional connectivity MRI. Methods Data from 86 patients with schizophrenia and 137 control subjects were obtained from publicly available repositories. Resting-state functional connectivity maps based on Iso-Distant Average Correlation measures across three distances were estimated detailing the local functional structure of the cerebral cortex. Results Patients with schizophrenia showed weaker local functional connectivity (i.e., lower MRI signal synchrony) in (i) prefrontal lobe areas, (ii) somatosensory, auditory, visual, and motor cortices, (iii) paralimbic system at the anterior insula and anterior cingulate cortex, and (iv) hippocampus. The distribution of the defect in cortical area synchrony largely coincided with the synchronization effect of the GABA agonist alprazolam previously observed using identical functional connectivity measures. There was also a notable resemblance between the anatomy of our findings and cortical areas showing higher density of parvalbumin (prefrontal lobe and sensory cortices) and somatostatin (anterior insula and anterior cingulate cortex) GABA interneurons in humans. Conclusions Our results thus provide detail of the functional anatomy of synchrony changes in the cerebral cortex in schizophrenia and suggest which elements of the interneuron system are affected. Such information could ultimately be relevant in the search for specific treatments.
ISSN:0924-9338
1778-3585