A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering

Numerical methods for computing Steklov eigenvalues have attracted the attention of academia for their important physical background and wide applications. In this article we discuss the multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inve...

Full description

Bibliographic Details
Main Authors: Xie Jiali, Bi Hai
Format: Article
Language:English
Published: De Gruyter 2023-07-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0607
_version_ 1797752507366113280
author Xie Jiali
Bi Hai
author_facet Xie Jiali
Bi Hai
author_sort Xie Jiali
collection DOAJ
description Numerical methods for computing Steklov eigenvalues have attracted the attention of academia for their important physical background and wide applications. In this article we discuss the multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering, and give the error estimation of the proposed scheme. In addition, on the basis of the a posteriori error indicator, we design an adaptive multigrid algorithm. Finally, we present numerical examples to show the efficiency of the proposed scheme.
first_indexed 2024-03-12T17:04:23Z
format Article
id doaj.art-ce5142b7053b428db905941aa516fba2
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-03-12T17:04:23Z
publishDate 2023-07-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-ce5142b7053b428db905941aa516fba22023-08-07T06:56:44ZengDe GruyterOpen Mathematics2391-54552023-07-0121154055810.1515/math-2022-0607A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scatteringXie Jiali0Bi Hai1School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550001, ChinaSchool of Mathematical Sciences, Guizhou Normal University, Guiyang, 550001, ChinaNumerical methods for computing Steklov eigenvalues have attracted the attention of academia for their important physical background and wide applications. In this article we discuss the multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering, and give the error estimation of the proposed scheme. In addition, on the basis of the a posteriori error indicator, we design an adaptive multigrid algorithm. Finally, we present numerical examples to show the efficiency of the proposed scheme.https://doi.org/10.1515/math-2022-0607steklov eigenvalue problem in inverse scatteringmultigrid discretizationthe shifted-inverse iterationerror estimationadaptive algorithm65n2565n30
spellingShingle Xie Jiali
Bi Hai
A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
Open Mathematics
steklov eigenvalue problem in inverse scattering
multigrid discretization
the shifted-inverse iteration
error estimation
adaptive algorithm
65n25
65n30
title A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
title_full A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
title_fullStr A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
title_full_unstemmed A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
title_short A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering
title_sort multigrid discretization scheme based on the shifted inverse iteration for the steklov eigenvalue problem in inverse scattering
topic steklov eigenvalue problem in inverse scattering
multigrid discretization
the shifted-inverse iteration
error estimation
adaptive algorithm
65n25
65n30
url https://doi.org/10.1515/math-2022-0607
work_keys_str_mv AT xiejiali amultigriddiscretizationschemebasedontheshiftedinverseiterationforthestekloveigenvalueproblemininversescattering
AT bihai amultigriddiscretizationschemebasedontheshiftedinverseiterationforthestekloveigenvalueproblemininversescattering
AT xiejiali multigriddiscretizationschemebasedontheshiftedinverseiterationforthestekloveigenvalueproblemininversescattering
AT bihai multigriddiscretizationschemebasedontheshiftedinverseiterationforthestekloveigenvalueproblemininversescattering