Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources

In this paper, we study the implications of the Dark Large Mixing Angle (DLMA) solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></se...

Full description

Bibliographic Details
Main Authors: Monojit Ghosh, Srubabati Goswami, Supriya Pan, Bartol Pavlović
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/9/9/380
_version_ 1797576506076037120
author Monojit Ghosh
Srubabati Goswami
Supriya Pan
Bartol Pavlović
author_facet Monojit Ghosh
Srubabati Goswami
Supriya Pan
Bartol Pavlović
author_sort Monojit Ghosh
collection DOAJ
description In this paper, we study the implications of the Dark Large Mixing Angle (DLMA) solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula> in the context of the IceCube data. We study the consequences in the measurement of the neutrino oscillation parameters, namely the octant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> in light of both Large Mixing Angle (LMA) and DLMA solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>. We find that it will be impossible for IceCube to determine the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> and the true nature of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, i.e., LMA or DLMA, at the same time. This is because of the existence of an intrinsic degeneracy at the Hamiltonian level between these parameters. Apart from that, we also identify a new degeneracy between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and two solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula> for a fixed value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula>. We perform a chi-square fit using three different astrophysical sources, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> source, and <i>n</i> source, to find that both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> source are allowed within <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>σ</mi></mrow></semantics></math></inline-formula>, whereas the <i>n</i> source is excluded at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>σ</mi></mrow></semantics></math></inline-formula>. It is difficult to make any conclusion regarding the measurement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source. However, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> (<i>n</i>) source prefers the higher (lower) octant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> for both LMA and DLMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>. The best-fit value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> is around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>180</mn><mo>∘</mo></msup></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>0</mn><mo>∘</mo></msup><mo>/</mo><msup><mn>360</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>) for the LMA (DLMA) solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, whereas for the DLMA (LMA) solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, the best-fit value is around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>0</mn><mo>∘</mo></msup><mo>/</mo><msup><mn>360</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>180</mn><mo>∘</mo></msup></semantics></math></inline-formula>) for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> (<i>n</i>) source. If we assume the current best-fit values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> to be true, then the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> sources prefer the LMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, whereas the <i>n</i> source prefers the DLMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>.
first_indexed 2024-03-10T21:54:00Z
format Article
id doaj.art-ce64d9f8d4514e8abf5d2a5f95c77bbb
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-10T21:54:00Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-ce64d9f8d4514e8abf5d2a5f95c77bbb2023-11-19T13:17:11ZengMDPI AGUniverse2218-19972023-08-019938010.3390/universe9090380Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical SourcesMonojit Ghosh0Srubabati Goswami1Supriya Pan2Bartol Pavlović3Center of Excellence for Advanced Materials and Sensing Devices, Ruder Bošković Institute, 10000 Zagreb, CroatiaPhysical Research Laboratory, Ahmedabad 380009, Gujarat, IndiaPhysical Research Laboratory, Ahmedabad 380009, Gujarat, IndiaDepartment of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, CroatiaIn this paper, we study the implications of the Dark Large Mixing Angle (DLMA) solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula> in the context of the IceCube data. We study the consequences in the measurement of the neutrino oscillation parameters, namely the octant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> in light of both Large Mixing Angle (LMA) and DLMA solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>. We find that it will be impossible for IceCube to determine the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> and the true nature of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, i.e., LMA or DLMA, at the same time. This is because of the existence of an intrinsic degeneracy at the Hamiltonian level between these parameters. Apart from that, we also identify a new degeneracy between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and two solutions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula> for a fixed value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula>. We perform a chi-square fit using three different astrophysical sources, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> source, and <i>n</i> source, to find that both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> source are allowed within <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mi>σ</mi></mrow></semantics></math></inline-formula>, whereas the <i>n</i> source is excluded at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>σ</mi></mrow></semantics></math></inline-formula>. It is difficult to make any conclusion regarding the measurement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> source. However, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> (<i>n</i>) source prefers the higher (lower) octant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> for both LMA and DLMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>. The best-fit value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> is around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>180</mn><mo>∘</mo></msup></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>0</mn><mo>∘</mo></msup><mo>/</mo><msup><mn>360</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>) for the LMA (DLMA) solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, whereas for the DLMA (LMA) solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, the best-fit value is around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>0</mn><mo>∘</mo></msup><mo>/</mo><msup><mn>360</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>180</mn><mo>∘</mo></msup></semantics></math></inline-formula>) for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> (<i>n</i>) source. If we assume the current best-fit values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>23</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mi>CP</mi></msub></semantics></math></inline-formula> to be true, then the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>μ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> sources prefer the LMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>, whereas the <i>n</i> source prefers the DLMA solution of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>θ</mi><mn>12</mn></msub></semantics></math></inline-formula>.https://www.mdpi.com/2218-1997/9/9/380neutrino oscillationastrophysical neutrinosIceCube experiment
spellingShingle Monojit Ghosh
Srubabati Goswami
Supriya Pan
Bartol Pavlović
Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
Universe
neutrino oscillation
astrophysical neutrinos
IceCube experiment
title Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
title_full Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
title_fullStr Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
title_full_unstemmed Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
title_short Implications of the DLMA Solution of <i>θ</i><sub>12</sub> for IceCube Data Using Different Astrophysical Sources
title_sort implications of the dlma solution of i θ i sub 12 sub for icecube data using different astrophysical sources
topic neutrino oscillation
astrophysical neutrinos
IceCube experiment
url https://www.mdpi.com/2218-1997/9/9/380
work_keys_str_mv AT monojitghosh implicationsofthedlmasolutionofithisub12subforicecubedatausingdifferentastrophysicalsources
AT srubabatigoswami implicationsofthedlmasolutionofithisub12subforicecubedatausingdifferentastrophysicalsources
AT supriyapan implicationsofthedlmasolutionofithisub12subforicecubedatausingdifferentastrophysicalsources
AT bartolpavlovic implicationsofthedlmasolutionofithisub12subforicecubedatausingdifferentastrophysicalsources