Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives

Although solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been successfully used as drug delivery systems for about 30 years, the usage of these nanoparticles as food-grade nanovehicles for nutraceuticals or bioactive compounds has been, relatively speaking, scarcely in...

Full description

Bibliographic Details
Main Authors: Chuan-He Tang, Huan-Le Chen, Jin-Ru Dong
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/3/1726
Description
Summary:Although solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been successfully used as drug delivery systems for about 30 years, the usage of these nanoparticles as food-grade nanovehicles for nutraceuticals or bioactive compounds has been, relatively speaking, scarcely investigated. With fast-increasing interest in the incorporation of a wide range of bioactives in food formulations, as well as health awareness of consumers, there has been a renewed urge for the development of food-compatible SLNs and/or NLCs as nanovehicles for improving water dispersibility, stability, bioavailability, and bioactivities of many lipophilic nutraceuticals or poorly soluble bioactives. In this review, the development of food-grade SLNs and NLCs, as well as their utilization as nanosized delivery systems for lipophilic or hydrophobic nutraceuticals, was comprehensively reviewed. First, the structural composition and preparation methods of food-grade SLNs and NLCs were simply summarized. Next, some key issues about the usage of such nanoparticles as oral nanovehicles, e.g., incorporation and release of bioactives, oxidative stability, lipid digestion and absorption, and intestinal transport, were critically discussed. Then, recent advances in the utilization of SLNs and NLCs as nanovehicles for encapsulation and delivery of different liposoluble or poorly soluble nutraceuticals or bioactives were comprehensively reviewed. The performance of such nanoparticles as nanovehicles for improving stability, bioavailability, and bioactivities of curcuminoids (and curcumin in particular) was also highlighted. Lastly, some strategies to improve the oral bioavailability and delivery of loaded nutraceuticals in such nanoparticles were presented. The review will be relevant, providing state-of-the-art knowledge about the development of food-grade lipid-based nanovehicles for improving the stability and bioavailability of many nutraceuticals.
ISSN:2076-3417