A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
<p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land. For modeling this hydrology sys...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-09-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf |
_version_ | 1797683834920108032 |
---|---|
author | Y. Fischler T. Kleiner C. Bischof J. Schmiedel R. Sayag R. Emunds R. Emunds L. F. Oestreich L. F. Oestreich A. Humbert A. Humbert |
author_facet | Y. Fischler T. Kleiner C. Bischof J. Schmiedel R. Sayag R. Emunds R. Emunds L. F. Oestreich L. F. Oestreich A. Humbert A. Humbert |
author_sort | Y. Fischler |
collection | DOAJ |
description | <p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land.
For modeling this hydrology system, a previously developed porous-media concept called the confined–unconfined aquifer system (CUAS) is used. To allow for realistic simulations at the ice sheet scale,
we developed CUAS-MPI, an MPI-parallel C/C++ implementation of CUAS (MPI: Message Passing Interface), which employs the Portable, Extensible Toolkit for Scientific Computation (PETSc) infrastructure for handling grids and equation systems.
We validate the accuracy of the numerical results by comparing them with a set of analytical solutions to the model equations, which involve two types of boundary conditions. We then investigate the scaling behavior of CUAS-MPI and show that CUAS-MPI scales up to 3840 MPI processes running a realistic Greenland setup on the Lichtenberg HPC system.
Our measurements also show that CUAS-MPI reaches a throughput comparable to that of ice sheet simulations, e.g., the Ice-sheet and Sea-level System Model (ISSM).
Lastly, we discuss opportunities for ice sheet modeling, explore future coupling possibilities of CUAS-MPI with other simulations, and consider throughput bottlenecks and limits of further scaling.</p> |
first_indexed | 2024-03-12T00:20:35Z |
format | Article |
id | doaj.art-ce6d9e6e84884a5585da392dac238582 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-03-12T00:20:35Z |
publishDate | 2023-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-ce6d9e6e84884a5585da392dac2385822023-09-15T13:25:19ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032023-09-01165305532210.5194/gmd-16-5305-2023A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)Y. Fischler0T. Kleiner1C. Bischof2J. Schmiedel3R. Sayag4R. Emunds5R. Emunds6L. F. Oestreich7L. F. Oestreich8A. Humbert9A. Humbert10Department of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyDepartment of Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sde Boker, IsraelDepartment of Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sde Boker, IsraelDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyFaculty of Geosciences, University of Bremen, Bremen, Germany<p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land. For modeling this hydrology system, a previously developed porous-media concept called the confined–unconfined aquifer system (CUAS) is used. To allow for realistic simulations at the ice sheet scale, we developed CUAS-MPI, an MPI-parallel C/C++ implementation of CUAS (MPI: Message Passing Interface), which employs the Portable, Extensible Toolkit for Scientific Computation (PETSc) infrastructure for handling grids and equation systems. We validate the accuracy of the numerical results by comparing them with a set of analytical solutions to the model equations, which involve two types of boundary conditions. We then investigate the scaling behavior of CUAS-MPI and show that CUAS-MPI scales up to 3840 MPI processes running a realistic Greenland setup on the Lichtenberg HPC system. Our measurements also show that CUAS-MPI reaches a throughput comparable to that of ice sheet simulations, e.g., the Ice-sheet and Sea-level System Model (ISSM). Lastly, we discuss opportunities for ice sheet modeling, explore future coupling possibilities of CUAS-MPI with other simulations, and consider throughput bottlenecks and limits of further scaling.</p>https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf |
spellingShingle | Y. Fischler T. Kleiner C. Bischof J. Schmiedel R. Sayag R. Emunds R. Emunds L. F. Oestreich L. F. Oestreich A. Humbert A. Humbert A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) Geoscientific Model Development |
title | A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) |
title_full | A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) |
title_fullStr | A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) |
title_full_unstemmed | A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) |
title_short | A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0) |
title_sort | parallel implementation of the confined unconfined aquifer system model for subglacial hydrology design verification and performance analysis cuas mpi v0 1 0 |
url | https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf |
work_keys_str_mv | AT yfischler aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT tkleiner aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT cbischof aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT jschmiedel aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT rsayag aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT remunds aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT remunds aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT lfoestreich aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT lfoestreich aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT ahumbert aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT ahumbert aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT yfischler parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT tkleiner parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT cbischof parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT jschmiedel parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT rsayag parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT remunds parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT remunds parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT lfoestreich parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT lfoestreich parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT ahumbert parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 AT ahumbert parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010 |