A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)

<p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land. For modeling this hydrology sys...

Full description

Bibliographic Details
Main Authors: Y. Fischler, T. Kleiner, C. Bischof, J. Schmiedel, R. Sayag, R. Emunds, L. F. Oestreich, A. Humbert
Format: Article
Language:English
Published: Copernicus Publications 2023-09-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf
_version_ 1797683834920108032
author Y. Fischler
T. Kleiner
C. Bischof
J. Schmiedel
R. Sayag
R. Emunds
R. Emunds
L. F. Oestreich
L. F. Oestreich
A. Humbert
A. Humbert
author_facet Y. Fischler
T. Kleiner
C. Bischof
J. Schmiedel
R. Sayag
R. Emunds
R. Emunds
L. F. Oestreich
L. F. Oestreich
A. Humbert
A. Humbert
author_sort Y. Fischler
collection DOAJ
description <p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land. For modeling this hydrology system, a previously developed porous-media concept called the confined–unconfined aquifer system (CUAS) is used. To allow for realistic simulations at the ice sheet scale, we developed CUAS-MPI, an MPI-parallel C/C++ implementation of CUAS (MPI: Message Passing Interface), which employs the Portable, Extensible Toolkit for Scientific Computation (PETSc) infrastructure for handling grids and equation systems. We validate the accuracy of the numerical results by comparing them with a set of analytical solutions to the model equations, which involve two types of boundary conditions. We then investigate the scaling behavior of CUAS-MPI and show that CUAS-MPI scales up to 3840 MPI processes running a realistic Greenland setup on the Lichtenberg HPC system. Our measurements also show that CUAS-MPI reaches a throughput comparable to that of ice sheet simulations, e.g., the Ice-sheet and Sea-level System Model (ISSM). Lastly, we discuss opportunities for ice sheet modeling, explore future coupling possibilities of CUAS-MPI with other simulations, and consider throughput bottlenecks and limits of further scaling.</p>
first_indexed 2024-03-12T00:20:35Z
format Article
id doaj.art-ce6d9e6e84884a5585da392dac238582
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-03-12T00:20:35Z
publishDate 2023-09-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-ce6d9e6e84884a5585da392dac2385822023-09-15T13:25:19ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032023-09-01165305532210.5194/gmd-16-5305-2023A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)Y. Fischler0T. Kleiner1C. Bischof2J. Schmiedel3R. Sayag4R. Emunds5R. Emunds6L. F. Oestreich7L. F. Oestreich8A. Humbert9A. Humbert10Department of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyDepartment of Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sde Boker, IsraelDepartment of Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sde Boker, IsraelDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyDepartment of Computer Science, Technical University Darmstadt, Darmstadt, Hesse, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Bremen, GermanyFaculty of Geosciences, University of Bremen, Bremen, Germany<p>The subglacial hydrological system affects (i) the motion of ice sheets through sliding, (ii) the location of lakes at the ice margin, and (iii) the ocean circulation by freshwater discharge directly at the grounding line or (iv) via rivers flowing over land. For modeling this hydrology system, a previously developed porous-media concept called the confined–unconfined aquifer system (CUAS) is used. To allow for realistic simulations at the ice sheet scale, we developed CUAS-MPI, an MPI-parallel C/C++ implementation of CUAS (MPI: Message Passing Interface), which employs the Portable, Extensible Toolkit for Scientific Computation (PETSc) infrastructure for handling grids and equation systems. We validate the accuracy of the numerical results by comparing them with a set of analytical solutions to the model equations, which involve two types of boundary conditions. We then investigate the scaling behavior of CUAS-MPI and show that CUAS-MPI scales up to 3840 MPI processes running a realistic Greenland setup on the Lichtenberg HPC system. Our measurements also show that CUAS-MPI reaches a throughput comparable to that of ice sheet simulations, e.g., the Ice-sheet and Sea-level System Model (ISSM). Lastly, we discuss opportunities for ice sheet modeling, explore future coupling possibilities of CUAS-MPI with other simulations, and consider throughput bottlenecks and limits of further scaling.</p>https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf
spellingShingle Y. Fischler
T. Kleiner
C. Bischof
J. Schmiedel
R. Sayag
R. Emunds
R. Emunds
L. F. Oestreich
L. F. Oestreich
A. Humbert
A. Humbert
A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
Geoscientific Model Development
title A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
title_full A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
title_fullStr A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
title_full_unstemmed A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
title_short A parallel implementation of the confined–unconfined aquifer system model for subglacial hydrology: design, verification, and performance analysis (CUAS-MPI v0.1.0)
title_sort parallel implementation of the confined unconfined aquifer system model for subglacial hydrology design verification and performance analysis cuas mpi v0 1 0
url https://gmd.copernicus.org/articles/16/5305/2023/gmd-16-5305-2023.pdf
work_keys_str_mv AT yfischler aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT tkleiner aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT cbischof aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT jschmiedel aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT rsayag aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT remunds aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT remunds aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT lfoestreich aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT lfoestreich aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT ahumbert aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT ahumbert aparallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT yfischler parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT tkleiner parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT cbischof parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT jschmiedel parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT rsayag parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT remunds parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT remunds parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT lfoestreich parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT lfoestreich parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT ahumbert parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010
AT ahumbert parallelimplementationoftheconfinedunconfinedaquifersystemmodelforsubglacialhydrologydesignverificationandperformanceanalysiscuasmpiv010