Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes

Global patterns of gene transcription can be represented with reduced dimensionality. Here, the authors devise a method called Tradict that learns and uses 100 marker genes to predict transcriptome-wide pathway expression levels and patterns that reflect cell activity and state.

Bibliographic Details
Main Authors: Surojit Biswas, Konstantin Kerner, Paulo José Pereira Lima Teixeira, Jeffery L. Dangl, Vladimir Jojic, Philip A. Wigge
Format: Article
Language:English
Published: Nature Portfolio 2017-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/ncomms15309
_version_ 1818977671238909952
author Surojit Biswas
Konstantin Kerner
Paulo José Pereira Lima Teixeira
Jeffery L. Dangl
Vladimir Jojic
Philip A. Wigge
author_facet Surojit Biswas
Konstantin Kerner
Paulo José Pereira Lima Teixeira
Jeffery L. Dangl
Vladimir Jojic
Philip A. Wigge
author_sort Surojit Biswas
collection DOAJ
description Global patterns of gene transcription can be represented with reduced dimensionality. Here, the authors devise a method called Tradict that learns and uses 100 marker genes to predict transcriptome-wide pathway expression levels and patterns that reflect cell activity and state.
first_indexed 2024-12-20T16:31:27Z
format Article
id doaj.art-ce737e4cc0ea42049b5f81c9b37826b7
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-20T16:31:27Z
publishDate 2017-05-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-ce737e4cc0ea42049b5f81c9b37826b72022-12-21T19:33:16ZengNature PortfolioNature Communications2041-17232017-05-018111010.1038/ncomms15309Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genesSurojit Biswas0Konstantin Kerner1Paulo José Pereira Lima Teixeira2Jeffery L. Dangl3Vladimir Jojic4Philip A. Wigge5Department of Biomedical Informatics, Harvard Medical SchoolBotanical Institute, Biocenter, University of CologneHoward Hughes Medical Institute, University of North Carolina at Chapel HillHoward Hughes Medical Institute, University of North Carolina at Chapel HillDepartment of Computer Science, University of North Carolina at Chapel HillSainsbury Laboratory, University of CambridgeGlobal patterns of gene transcription can be represented with reduced dimensionality. Here, the authors devise a method called Tradict that learns and uses 100 marker genes to predict transcriptome-wide pathway expression levels and patterns that reflect cell activity and state.https://doi.org/10.1038/ncomms15309
spellingShingle Surojit Biswas
Konstantin Kerner
Paulo José Pereira Lima Teixeira
Jeffery L. Dangl
Vladimir Jojic
Philip A. Wigge
Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
Nature Communications
title Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
title_full Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
title_fullStr Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
title_full_unstemmed Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
title_short Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
title_sort tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes
url https://doi.org/10.1038/ncomms15309
work_keys_str_mv AT surojitbiswas tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes
AT konstantinkerner tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes
AT paulojosepereiralimateixeira tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes
AT jefferyldangl tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes
AT vladimirjojic tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes
AT philipawigge tradictenablesaccuratepredictionofeukaryotictranscriptionalstatesfrom100markergenes