Multi-Physical Models of Bending Characteristics on the Double-Clamped Beam Switch for Flexible Electronic Devices Application

In this paper, multi-physical models of bending characteristics, including the static, dynamic and microwave models, are firstly proposed for the double-clamped beam switch based on flexible substrate. Both simulated and experimental verification have been carried out to prove that the changing regu...

Full description

Bibliographic Details
Main Authors: Lei Han, Lijun Chen, Ruijie Qin, Kang Wang, Zhiqiang Zhang, Meng Nie, Xiaodong Huang
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/24/7074
Description
Summary:In this paper, multi-physical models of bending characteristics, including the static, dynamic and microwave models, are firstly proposed for the double-clamped beam switch based on flexible substrate. Both simulated and experimental verification have been carried out to prove that the changing regularity of the driving voltage and time of the switch is inversely proportional with the increase in the bending curvature of the flexible substrate. The microwave performance of the switch at the ON state is found to get worse with the increase in the bending curvature. The measured results indicate that when the bending curvature increases from 0 m<sup>−1</sup> to 28.6 m<sup>−1</sup>, the measured driving voltage decreases from 90.0 V to 72.6 V with the error of 5.9% compared with the calculated results. The measured driving time decreases from 52.4 μs to 35.6 μs with the error of 16.7% compared with the calculated results. When the substrate bending curvature increases from 0 m<sup>−1</sup> to 28.6 m<sup>−1</sup>, the measured reflection loss S<sub>11</sub> of the switch gradually deteriorates from −27.1 dB to −22.0 dB with the error of 1.3 dB corresponding to the calculated results at 10 GHz. All the simulated and experimental results are consistent with the theoretical calculated results.
ISSN:1424-8220