Summary: | In this study, the influence of the high-pressure torsion (HPT) processing parameters and solution treatment (ST) on the corrosion and tribocorrosion behavior of CoCrMo (CCM) alloys was investigated for possible usage in biomedical applications. The corrosion behavior of the CCM alloys was investigated by using potentiodynamic scanning (PDS) and electrochemical impedance spectroscopy (EIS) tests. Tribocorrosion tests were carried out in a reciprocating ball-on-plate tribometer at 1 Hz, 1 N load, and 3 mm stroke length for 2 h. All electrochemical measurements were performed using a potentiostat in standard phosphate-buffered saline (PBS) solution at body temperature (37 ± 2 °C). The samples were characterized by using a scanning electron microscope (SEM), transmission electron microscope (TEM), optical microscope (OM), and X-ray diffraction (XRD). The deepness and width of wear tracks were examined by using a profilometer. The results showed that HPT and ST processes did not affect significantly the corrosion resistance of samples. However, the ST-treated samples had a higher material loss during sliding in standard phosphate-buffered saline (PBS) at body temperature as compared to HPT-treated samples.
|