Model predictive control of VSC-HVDC transmission system for power supply to passive networks

In the traditional double closed-loop control strategy for VSC-HVDC transmission system that supply power to passive networks, the control structure is complex, the PI parameters are more difficult, the tuning is slow, and the response speed is slow. Rectifier-side direct power control based on mode...

Full description

Bibliographic Details
Main Authors: Zhao Pengfei, Guo Mingxing, Tang Xiaojun, Liu Yingpei, Huo Qidi, Pang Aili, Zhang Mengyao, Lv Sizhuo
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/62/e3sconf_icbte2019_02015.pdf
Description
Summary:In the traditional double closed-loop control strategy for VSC-HVDC transmission system that supply power to passive networks, the control structure is complex, the PI parameters are more difficult, the tuning is slow, and the response speed is slow. Rectifier-side direct power control based on model prediction and direct AC voltage control strategy on inverter side are proposed. Based on the discrete mathematical model of the converter, the system output under all switching function combinations is calculated by the ergodic method, and the switching function that minimizes the objective function is selected to act on the inverter. The utility model has the advantages of simple structure, no complicated PI parameter setting, fast dynamic response, high voltage quality electric energy to the passive network, good steady state performance and dynamic performance. The simulation results verify the feasibility and effectiveness of the proposed control strategy.
ISSN:2267-1242