Box-constrained optimization for minimax supervised learning***
In this paper, we present the optimization procedure for computing the discrete boxconstrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand discretized features. A box-constrained region defines some bounds for each class proportion independently. The box-co...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2021-08-01
|
Series: | ESAIM: Proceedings and Surveys |
Online Access: | https://www.esaim-proc.org/articles/proc/pdf/2021/02/proc2107109.pdf |
Summary: | In this paper, we present the optimization procedure for computing the discrete boxconstrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand discretized features. A box-constrained region defines some bounds for each class proportion independently. The box-constrained minimax classifier is obtained from the computation of the least favorable prior which maximizes the minimum empirical risk of error over the box-constrained region. After studying the discrete empirical Bayes risk over the probabilistic simplex, we consider a projected subgradient algorithm which computes the prior maximizing this concave multivariate piecewise affine function over a polyhedral domain. The convergence of our algorithm is established. |
---|---|
ISSN: | 2267-3059 |