Peroxymonosulfate Activation by Photoelectroactive Nanohybrid Filter towards Effective Micropollutant Decontamination

Herein, we report and demonstrate a photoelectrochemical filtration system that enables the effective decontamination of micropollutants from water. The key to this system was a photoelectric–active nanohybrid filter consisting of a carbon nanotube (CNT) and MIL–101(Fe). Various advanced characteriz...

Full description

Bibliographic Details
Main Authors: Wenchang Zhao, Yuling Dai, Wentian Zheng, Yanbiao Liu
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/12/4/416
Description
Summary:Herein, we report and demonstrate a photoelectrochemical filtration system that enables the effective decontamination of micropollutants from water. The key to this system was a photoelectric–active nanohybrid filter consisting of a carbon nanotube (CNT) and MIL–101(Fe). Various advanced characterization techniques were employed to obtain detailed information on the microstructure, morphology, and defect states of the nanohybrid filter. The results suggest that both radical and nonradical pathways collectively contributed to the degradation of antibiotic tetracycline, a model refractory micropollutant. The underlying working mechanism was proposed based on solid experimental evidences. This study provides new insights into the effective removal of micropollutants from water by integrating state–of–the–art advanced oxidation and microfiltration techniques.
ISSN:2073-4344