Resource competition may lead to effective treatment of antibiotic resistant infections.
Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth...
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2013-01-01
|
| Series: | PLoS ONE |
| Online Access: | http://europepmc.org/articles/PMC3862480?pdf=render |
| _version_ | 1831794488615370752 |
|---|---|
| author | Antonio L C Gomes James E Galagan Daniel Segrè |
| author_facet | Antonio L C Gomes James E Galagan Daniel Segrè |
| author_sort | Antonio L C Gomes |
| collection | DOAJ |
| description | Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models. |
| first_indexed | 2024-12-22T15:50:09Z |
| format | Article |
| id | doaj.art-ce95aa88dae5414ab4e543803ba36b32 |
| institution | Directory Open Access Journal |
| issn | 1932-6203 |
| language | English |
| last_indexed | 2024-12-22T15:50:09Z |
| publishDate | 2013-01-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS ONE |
| spelling | doaj.art-ce95aa88dae5414ab4e543803ba36b322022-12-21T18:20:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-01812e8077510.1371/journal.pone.0080775Resource competition may lead to effective treatment of antibiotic resistant infections.Antonio L C GomesJames E GalaganDaniel SegrèDrug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models.http://europepmc.org/articles/PMC3862480?pdf=render |
| spellingShingle | Antonio L C Gomes James E Galagan Daniel Segrè Resource competition may lead to effective treatment of antibiotic resistant infections. PLoS ONE |
| title | Resource competition may lead to effective treatment of antibiotic resistant infections. |
| title_full | Resource competition may lead to effective treatment of antibiotic resistant infections. |
| title_fullStr | Resource competition may lead to effective treatment of antibiotic resistant infections. |
| title_full_unstemmed | Resource competition may lead to effective treatment of antibiotic resistant infections. |
| title_short | Resource competition may lead to effective treatment of antibiotic resistant infections. |
| title_sort | resource competition may lead to effective treatment of antibiotic resistant infections |
| url | http://europepmc.org/articles/PMC3862480?pdf=render |
| work_keys_str_mv | AT antoniolcgomes resourcecompetitionmayleadtoeffectivetreatmentofantibioticresistantinfections AT jamesegalagan resourcecompetitionmayleadtoeffectivetreatmentofantibioticresistantinfections AT danielsegre resourcecompetitionmayleadtoeffectivetreatmentofantibioticresistantinfections |