Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis

Abstract The present study introduces a unified framework combining a mechanistic model with a genetic algorithm (GA) for the parameter estimation of electrochemiluminescence (ECL) kinetics of the Ru(bpy)32+/TPrA system occurring in a smartphone‐based sensor. The framework allows a straightforward s...

Full description

Bibliographic Details
Main Authors: Dr. Elmer Ccopa Rivera, Dr. Rodney L. Summerscales, Dr. Padma P. Tadi Uppala, Dr. Hyun J. Kwon
Format: Article
Language:English
Published: Wiley-VCH 2020-08-01
Series:ChemistryOpen
Subjects:
Online Access:https://doi.org/10.1002/open.202000165
_version_ 1818966369894400000
author Dr. Elmer Ccopa Rivera
Dr. Rodney L. Summerscales
Dr. Padma P. Tadi Uppala
Dr. Hyun J. Kwon
author_facet Dr. Elmer Ccopa Rivera
Dr. Rodney L. Summerscales
Dr. Padma P. Tadi Uppala
Dr. Hyun J. Kwon
author_sort Dr. Elmer Ccopa Rivera
collection DOAJ
description Abstract The present study introduces a unified framework combining a mechanistic model with a genetic algorithm (GA) for the parameter estimation of electrochemiluminescence (ECL) kinetics of the Ru(bpy)32+/TPrA system occurring in a smartphone‐based sensor. The framework allows a straightforward solution for simultaneous estimation of multiple parameters which can be, otherwise, time‐consuming and lead to non‐convergence. Model parameters are estimated by achieving a high correlation between the model prediction and the measured ECL intensity from the ECL sensor. The developed model is used to perform a sensitivity analysis (SA), which provides quantitative effects of the model parameters on the concentrations of chemical species involved in the system. The results demonstrate that the GA‐based parameter estimation and the SA approaches are effective in analyzing the kinetics of the ECL mechanism. Therefore, these approaches can be incorporated as analysis tools in the ECL kinetics study with practical application in the calibration of mechanistic models for any required sensing condition.
first_indexed 2024-12-20T13:31:49Z
format Article
id doaj.art-ce97380228f249148727859852d458ef
institution Directory Open Access Journal
issn 2191-1363
language English
last_indexed 2024-12-20T13:31:49Z
publishDate 2020-08-01
publisher Wiley-VCH
record_format Article
series ChemistryOpen
spelling doaj.art-ce97380228f249148727859852d458ef2022-12-21T19:39:04ZengWiley-VCHChemistryOpen2191-13632020-08-019885486310.1002/open.202000165Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity AnalysisDr. Elmer Ccopa Rivera0Dr. Rodney L. Summerscales1Dr. Padma P. Tadi Uppala2Dr. Hyun J. Kwon3Department of Engineering Andrews University 8450 E Campus Circle Drive Berrien Springs MI 49104 USADepartment of Computing Andrews University 4185 E. Campus Circle Drive Berrien Springs MI 49103 USASchool of Population Health, Nutrition & Wellness Andrews University 8475 University Boulevard Berrien Springs MI 49104 USADepartment of Engineering Andrews University 8450 E Campus Circle Drive Berrien Springs MI 49104 USAAbstract The present study introduces a unified framework combining a mechanistic model with a genetic algorithm (GA) for the parameter estimation of electrochemiluminescence (ECL) kinetics of the Ru(bpy)32+/TPrA system occurring in a smartphone‐based sensor. The framework allows a straightforward solution for simultaneous estimation of multiple parameters which can be, otherwise, time‐consuming and lead to non‐convergence. Model parameters are estimated by achieving a high correlation between the model prediction and the measured ECL intensity from the ECL sensor. The developed model is used to perform a sensitivity analysis (SA), which provides quantitative effects of the model parameters on the concentrations of chemical species involved in the system. The results demonstrate that the GA‐based parameter estimation and the SA approaches are effective in analyzing the kinetics of the ECL mechanism. Therefore, these approaches can be incorporated as analysis tools in the ECL kinetics study with practical application in the calibration of mechanistic models for any required sensing condition.https://doi.org/10.1002/open.202000165sensorssmartphoneselectrochemiluminescenceparameter estimationsensitivity analysis
spellingShingle Dr. Elmer Ccopa Rivera
Dr. Rodney L. Summerscales
Dr. Padma P. Tadi Uppala
Dr. Hyun J. Kwon
Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
ChemistryOpen
sensors
smartphones
electrochemiluminescence
parameter estimation
sensitivity analysis
title Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
title_full Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
title_fullStr Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
title_full_unstemmed Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
title_short Electrochemiluminescence Mechanisms Investigated with Smartphone‐Based Sensor Data Modeling, Parameter Estimation and Sensitivity Analysis
title_sort electrochemiluminescence mechanisms investigated with smartphone based sensor data modeling parameter estimation and sensitivity analysis
topic sensors
smartphones
electrochemiluminescence
parameter estimation
sensitivity analysis
url https://doi.org/10.1002/open.202000165
work_keys_str_mv AT drelmerccoparivera electrochemiluminescencemechanismsinvestigatedwithsmartphonebasedsensordatamodelingparameterestimationandsensitivityanalysis
AT drrodneylsummerscales electrochemiluminescencemechanismsinvestigatedwithsmartphonebasedsensordatamodelingparameterestimationandsensitivityanalysis
AT drpadmaptadiuppala electrochemiluminescencemechanismsinvestigatedwithsmartphonebasedsensordatamodelingparameterestimationandsensitivityanalysis
AT drhyunjkwon electrochemiluminescencemechanismsinvestigatedwithsmartphonebasedsensordatamodelingparameterestimationandsensitivityanalysis