Exploiting Machine Learning for Improving In-Memory Execution of Data-Intensive Workflows on Parallel Machines

Workflows are largely used to orchestrate complex sets of operations required to handle and process huge amounts of data. Parallel processing is often vital to reduce execution time when complex data-intensive workflows must be run efficiently, and at the same time, in-memory processing can bring im...

Celý popis

Podrobná bibliografie
Hlavní autoři: Riccardo Cantini, Fabrizio Marozzo, Alessio Orsino, Domenico Talia, Paolo Trunfio
Médium: Článek
Jazyk:English
Vydáno: MDPI AG 2021-05-01
Edice:Future Internet
Témata:
On-line přístup:https://www.mdpi.com/1999-5903/13/5/121