On Minimum (Kq, K) Stable Graphs

A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). Andrzej ˙ Zak in the paper On (Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of Dudek, Szyma´nski and Zwonek stating that for sufficiently large k the number of...

Full description

Bibliographic Details
Main Authors: Fouquet J.L., Thuillier H., Vanherpe J.M., Wojda A.P.
Format: Article
Language:English
Published: University of Zielona Góra 2013-03-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.1656
_version_ 1797704420809506816
author Fouquet J.L.
Thuillier H.
Vanherpe J.M.
Wojda A.P.
author_facet Fouquet J.L.
Thuillier H.
Vanherpe J.M.
Wojda A.P.
author_sort Fouquet J.L.
collection DOAJ
description A graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). Andrzej ˙ Zak in the paper On (Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of Dudek, Szyma´nski and Zwonek stating that for sufficiently large k the number of edges of a minimum (Kq, k) stable graph is (2q − 3)(k + 1) and that such a graph is isomorphic to sK2q−2 + tK2q−3 where s and t are integers such that s(q − 1) + t(q − 2) − 1 = k. We have proved (Fouquet et al. On (Kq, k) stable graphs with small k, Elektron. J. Combin. 19 (2012) #P50) that for q ≥ 5 and k ≤ q 2 +1 the graph Kq+k is the unique minimum (Kq, k) stable graph. In the present paper we are interested in the (Kq, k(q)) stable graphs of minimum size where k(q) is the maximum value for which for every nonnegative integer k <k(q) the only (Kq, k) stable graph of minimum size is Kq+k and by determining the exact value of k(q).
first_indexed 2024-03-12T05:20:10Z
format Article
id doaj.art-cea2425c9634416587d0e745cdddb45a
institution Directory Open Access Journal
issn 2083-5892
language English
last_indexed 2024-03-12T05:20:10Z
publishDate 2013-03-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae Graph Theory
spelling doaj.art-cea2425c9634416587d0e745cdddb45a2023-09-03T07:47:22ZengUniversity of Zielona GóraDiscussiones Mathematicae Graph Theory2083-58922013-03-0133110111510.7151/dmgt.1656On Minimum (Kq, K) Stable GraphsFouquet J.L.0Thuillier H.1Vanherpe J.M.2Wojda A.P.3L.I.F.O., Faculté des Sciences, B.P. 6759 Université d’Orléans, 45067 Orléans Cedex 2, FranceL.I.F.O., Faculté des Sciences, B.P. 6759 Université d’Orléans, 45067 Orléans Cedex 2, FranceL.I.F.O., Faculté des Sciences, B.P. 6759 Université d’Orléans, 45067 Orléans Cedex 2, FranceWydzia l Matematyki Stosowanej Zak lad Matematyki Dyskretnej A.G.H., Al. Mickiewicza 30, 30-059 Kraków, PolandA graph G is a (Kq, k) stable graph (q ≥ 3) if it contains a Kq after deleting any subset of k vertices (k ≥ 0). Andrzej ˙ Zak in the paper On (Kq; k)-stable graphs, ( doi:/10.1002/jgt.21705) has proved a conjecture of Dudek, Szyma´nski and Zwonek stating that for sufficiently large k the number of edges of a minimum (Kq, k) stable graph is (2q − 3)(k + 1) and that such a graph is isomorphic to sK2q−2 + tK2q−3 where s and t are integers such that s(q − 1) + t(q − 2) − 1 = k. We have proved (Fouquet et al. On (Kq, k) stable graphs with small k, Elektron. J. Combin. 19 (2012) #P50) that for q ≥ 5 and k ≤ q 2 +1 the graph Kq+k is the unique minimum (Kq, k) stable graph. In the present paper we are interested in the (Kq, k(q)) stable graphs of minimum size where k(q) is the maximum value for which for every nonnegative integer k <k(q) the only (Kq, k) stable graph of minimum size is Kq+k and by determining the exact value of k(q).https://doi.org/10.7151/dmgt.1656stable graphs
spellingShingle Fouquet J.L.
Thuillier H.
Vanherpe J.M.
Wojda A.P.
On Minimum (Kq, K) Stable Graphs
Discussiones Mathematicae Graph Theory
stable graphs
title On Minimum (Kq, K) Stable Graphs
title_full On Minimum (Kq, K) Stable Graphs
title_fullStr On Minimum (Kq, K) Stable Graphs
title_full_unstemmed On Minimum (Kq, K) Stable Graphs
title_short On Minimum (Kq, K) Stable Graphs
title_sort on minimum kq k stable graphs
topic stable graphs
url https://doi.org/10.7151/dmgt.1656
work_keys_str_mv AT fouquetjl onminimumkqkstablegraphs
AT thuillierh onminimumkqkstablegraphs
AT vanherpejm onminimumkqkstablegraphs
AT wojdaap onminimumkqkstablegraphs