Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton

Dissolved organic matter (DOM) assists in the phytoremediation of heavy-metal-contaminated soils, but the effect of synergistic remediation of DOM on plants is unclear. This study investigated the effect of two DOM sources (cotton straw (CM) DOM and farmyard manure (FM) DOM) on cadmium (Cd) accumula...

Full description

Bibliographic Details
Main Authors: Tao Min, Tong Luo, Lili Chen, Weidan Lu, Yan Wang, Liyang Cheng, Sibo Ru, Junhua Li
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651321009544
Description
Summary:Dissolved organic matter (DOM) assists in the phytoremediation of heavy-metal-contaminated soils, but the effect of synergistic remediation of DOM on plants is unclear. This study investigated the effect of two DOM sources (cotton straw (CM) DOM and farmyard manure (FM) DOM) on cadmium (Cd) accumulation in Cd-contaminated soil by cotton and evaluated the phytoremediation effect of DOM. The results showed that adding DOM reduced the available nitrogen and increased organic matter, available phosphorus and available potassium. Applying DOM increased the proportions of Cd acid soluble fractions and reduced the proportions of Cd residual fractions by 1–7%. DOM application increased root length, root surface area and root volume compared to the control and had a promoting or inhibiting effect on cotton biomass, depending on the soil Cd concentration. Furthermore, applying DOM improved the Cd content and bioconcentration factor of cotton. The lower the molecular weight, hydrophilic components and aromaticity of DOM, the more conducive to Cd accumulation is in cotton. The correlation and random forest analyses also showed that CM showed high remediation potential. According to our study, DOM can improve the phytoremediation efficiency of cotton, especially in low-concentration contaminated soils. This study provides a basis for applying DOM in the phytoremediation of Cd-contaminated soils.
ISSN:0147-6513