Active learning and crowdsourcing: a survey of annotation optimization methods
High quality labeled corpora play a key role to elaborate machine learning systems. Generally, creating of such corpora requires human efforts. So, annotation process is expensive and time-consuming. Two approaches that optimize the annotation are active learning and crowdsourcing. Methods of active...
Main Authors: | R. A. Gilyazev, D. Y. Turdakov |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivannikov Institute for System Programming of the Russian Academy of Sciences
2018-10-01
|
Series: | Труды Института системного программирования РАН |
Subjects: | |
Online Access: | https://ispranproceedings.elpub.ru/jour/article/view/489 |
Similar Items
-
Dataflow-Driven Crowdsourcing: Relational Models and Algorithms
by: D. A. Ustalov
Published: (2016-04-01) -
A Crowdsourcing Engine for Mechanized Labor
by: D. A. Ustalov
Published: (2018-10-01) -
ВИКОРИСТАННЯ ПЕДАГОГІЧНИХ КРАУД-ТЕХНОЛОГІЙ У ПРОФЕСІЙНІЙ ПІДГОТОВЦІ СТУДЕНТІВ ІТ-СПЕЦІАЛЬНОСТЕЙ
by: Лариса Михайлівна Петренко, et al.
Published: (2020-04-01) -
Features of functional annotation of rheumatoid arthritis susceptibility genes by Cytoscape
by: N. Yu. Chasovskikh
Published: (2020-10-01) -
Actual problems of Eurasianism
by: Andrey V. Ivanov, et al.
Published: (2016-08-01)