Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains

In this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs to the scale of the so-called diamond spaces.

Bibliographic Details
Main Authors: Zhuo Ciqiang, Hovemann Marc, Sickel Winfried
Format: Article
Language:English
Published: De Gruyter 2020-11-01
Series:Analysis and Geometry in Metric Spaces
Subjects:
Online Access:https://doi.org/10.1515/agms-2020-0114
_version_ 1818688883011878912
author Zhuo Ciqiang
Hovemann Marc
Sickel Winfried
author_facet Zhuo Ciqiang
Hovemann Marc
Sickel Winfried
author_sort Zhuo Ciqiang
collection DOAJ
description In this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs to the scale of the so-called diamond spaces.
first_indexed 2024-12-17T12:01:17Z
format Article
id doaj.art-ced2686bf1a84b9aabfa04f1a2f680d1
institution Directory Open Access Journal
issn 2299-3274
language English
last_indexed 2024-12-17T12:01:17Z
publishDate 2020-11-01
publisher De Gruyter
record_format Article
series Analysis and Geometry in Metric Spaces
spelling doaj.art-ced2686bf1a84b9aabfa04f1a2f680d12022-12-21T21:49:50ZengDe GruyterAnalysis and Geometry in Metric Spaces2299-32742020-11-018126830410.1515/agms-2020-0114agms-2020-0114Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on DomainsZhuo Ciqiang0Hovemann Marc1Sickel Winfried2Hunan Normal University, Changsha, ChinaFriedrich-Schiller-University, Jena, GermanyFriedrich-Schiller-University, Jena, GermanyIn this article the authors study complex interpolation of Sobolev-Morrey spaces and their generalizations, Lizorkin-Triebel-Morrey spaces. Both scales are considered on bounded domains. Under certain conditions on the parameters the outcome belongs to the scale of the so-called diamond spaces.https://doi.org/10.1515/agms-2020-0114morrey spaceslizorkin-triebel-morrey spaces± method of interpolationcalderón’s first and second complex interpolation methoddiamond spacesextension operators46b7046e35
spellingShingle Zhuo Ciqiang
Hovemann Marc
Sickel Winfried
Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
Analysis and Geometry in Metric Spaces
morrey spaces
lizorkin-triebel-morrey spaces
± method of interpolation
calderón’s first and second complex interpolation method
diamond spaces
extension operators
46b70
46e35
title Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
title_full Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
title_fullStr Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
title_full_unstemmed Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
title_short Complex Interpolation of Lizorkin-Triebel-Morrey Spaces on Domains
title_sort complex interpolation of lizorkin triebel morrey spaces on domains
topic morrey spaces
lizorkin-triebel-morrey spaces
± method of interpolation
calderón’s first and second complex interpolation method
diamond spaces
extension operators
46b70
46e35
url https://doi.org/10.1515/agms-2020-0114
work_keys_str_mv AT zhuociqiang complexinterpolationoflizorkintriebelmorreyspacesondomains
AT hovemannmarc complexinterpolationoflizorkintriebelmorreyspacesondomains
AT sickelwinfried complexinterpolationoflizorkintriebelmorreyspacesondomains