Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation

We provide a scheme for efficient simulation of a broad class of quantum optics experiments. Our efficient simulation extends the continuous variable Gottesman–Knill theorem to a large class of non-Gaussian mixed states, thereby demonstrating that these non-Gaussian states are not an enabling resour...

Full description

Bibliographic Details
Main Authors: Victor Veitch, Nathan Wiebe, Christopher Ferrie, Joseph Emerson
Format: Article
Language:English
Published: IOP Publishing 2013-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/15/1/013037
Description
Summary:We provide a scheme for efficient simulation of a broad class of quantum optics experiments. Our efficient simulation extends the continuous variable Gottesman–Knill theorem to a large class of non-Gaussian mixed states, thereby demonstrating that these non-Gaussian states are not an enabling resource for exponential quantum speed-up. Our results also provide an operationally motivated interpretation of negativity as non-classicality. We apply our scheme to the case of noisy single-photon-added-thermal-states to show that this class admits states with positive Wigner function but negative P -function that are not useful resource states for quantum computation.
ISSN:1367-2630