Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy

K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temp...

Full description

Bibliographic Details
Main Authors: Weixiong Li, Chunxu Chen, Guangzhong Xie, Yuanjie Su
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/7/1753
_version_ 1797526482542657536
author Weixiong Li
Chunxu Chen
Guangzhong Xie
Yuanjie Su
author_facet Weixiong Li
Chunxu Chen
Guangzhong Xie
Yuanjie Su
author_sort Weixiong Li
collection DOAJ
description K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temperature-dependent longitudinal piezoelectric coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> was investigated in K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> single crystals via the Landau–Ginzburg–Devonshire theory. Results show that the piezoelectric anisotropy varies with the temperature and the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> deviates from the polar direction of the ferroelectric phase. In the tetragonal phase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>t</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> parallels with cubic polarization direction near the tetragonal-cubic transition region, and then gradually switches toward the nonpolar direction with decreasing temperatures. The maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>o</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> in the orthorhombic phase reveals a distinct varying trend in different crystal planes. As for the rhombohedral phase, slight fluctuation of the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> was observed and delivered a more stable temperature-dependent maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> and its corresponding angle <i>θ<sub>max</sub></i> in comparison with tetragonal and orthorhombic phases. This work not only sheds some light on the temperature-dependent phase transitions, but also paves the way for the optimization of piezoelectric properties in piezoelectric materials and devices.
first_indexed 2024-03-10T09:30:54Z
format Article
id doaj.art-ceee880b60d945108cb8b396f9fe9c3c
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-10T09:30:54Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-ceee880b60d945108cb8b396f9fe9c3c2023-11-22T04:33:24ZengMDPI AGNanomaterials2079-49912021-07-01117175310.3390/nano11071753Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric AnisotropyWeixiong Li0Chunxu Chen1Guangzhong Xie2Yuanjie Su3State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaK<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temperature-dependent longitudinal piezoelectric coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> was investigated in K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> single crystals via the Landau–Ginzburg–Devonshire theory. Results show that the piezoelectric anisotropy varies with the temperature and the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> deviates from the polar direction of the ferroelectric phase. In the tetragonal phase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>t</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> parallels with cubic polarization direction near the tetragonal-cubic transition region, and then gradually switches toward the nonpolar direction with decreasing temperatures. The maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>o</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> in the orthorhombic phase reveals a distinct varying trend in different crystal planes. As for the rhombohedral phase, slight fluctuation of the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> was observed and delivered a more stable temperature-dependent maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> and its corresponding angle <i>θ<sub>max</sub></i> in comparison with tetragonal and orthorhombic phases. This work not only sheds some light on the temperature-dependent phase transitions, but also paves the way for the optimization of piezoelectric properties in piezoelectric materials and devices.https://www.mdpi.com/2079-4991/11/7/1753piezoelectricanisotropyK<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>phasetemperature
spellingShingle Weixiong Li
Chunxu Chen
Guangzhong Xie
Yuanjie Su
Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
Nanomaterials
piezoelectric
anisotropy
K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>
phase
temperature
title Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
title_full Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
title_fullStr Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
title_full_unstemmed Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
title_short Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
title_sort optimizing k sub 0 5 sub na sub 0 5 sub nbo sub 3 sub single crystal by engineering piezoelectric anisotropy
topic piezoelectric
anisotropy
K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>
phase
temperature
url https://www.mdpi.com/2079-4991/11/7/1753
work_keys_str_mv AT weixiongli optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy
AT chunxuchen optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy
AT guangzhongxie optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy
AT yuanjiesu optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy