Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy
K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temp...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/7/1753 |
_version_ | 1797526482542657536 |
---|---|
author | Weixiong Li Chunxu Chen Guangzhong Xie Yuanjie Su |
author_facet | Weixiong Li Chunxu Chen Guangzhong Xie Yuanjie Su |
author_sort | Weixiong Li |
collection | DOAJ |
description | K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temperature-dependent longitudinal piezoelectric coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> was investigated in K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> single crystals via the Landau–Ginzburg–Devonshire theory. Results show that the piezoelectric anisotropy varies with the temperature and the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> deviates from the polar direction of the ferroelectric phase. In the tetragonal phase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>t</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> parallels with cubic polarization direction near the tetragonal-cubic transition region, and then gradually switches toward the nonpolar direction with decreasing temperatures. The maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>o</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> in the orthorhombic phase reveals a distinct varying trend in different crystal planes. As for the rhombohedral phase, slight fluctuation of the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> was observed and delivered a more stable temperature-dependent maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> and its corresponding angle <i>θ<sub>max</sub></i> in comparison with tetragonal and orthorhombic phases. This work not only sheds some light on the temperature-dependent phase transitions, but also paves the way for the optimization of piezoelectric properties in piezoelectric materials and devices. |
first_indexed | 2024-03-10T09:30:54Z |
format | Article |
id | doaj.art-ceee880b60d945108cb8b396f9fe9c3c |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T09:30:54Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-ceee880b60d945108cb8b396f9fe9c3c2023-11-22T04:33:24ZengMDPI AGNanomaterials2079-49912021-07-01117175310.3390/nano11071753Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric AnisotropyWeixiong Li0Chunxu Chen1Guangzhong Xie2Yuanjie Su3State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaState Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, ChinaK<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> is considered as one of the most promising lead-free piezoelectric ceramics in the field of wearable electronics because of its excellent piezoelectric properties and environmental friendliness. In this work, the temperature-dependent longitudinal piezoelectric coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> was investigated in K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> single crystals via the Landau–Ginzburg–Devonshire theory. Results show that the piezoelectric anisotropy varies with the temperature and the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mo>*</mo></msubsup></mrow></semantics></math></inline-formula> deviates from the polar direction of the ferroelectric phase. In the tetragonal phase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>t</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> parallels with cubic polarization direction near the tetragonal-cubic transition region, and then gradually switches toward the nonpolar direction with decreasing temperatures. The maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>o</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> in the orthorhombic phase reveals a distinct varying trend in different crystal planes. As for the rhombohedral phase, slight fluctuation of the maximum of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mn>33</mn></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> was observed and delivered a more stable temperature-dependent maximum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>d</mi><mrow><mrow><mn>33</mn><mi>m</mi><mi>a</mi><mi>x</mi></mrow></mrow><mrow><msup><mi>r</mi><mo>*</mo></msup></mrow></msubsup></mrow></semantics></math></inline-formula> and its corresponding angle <i>θ<sub>max</sub></i> in comparison with tetragonal and orthorhombic phases. This work not only sheds some light on the temperature-dependent phase transitions, but also paves the way for the optimization of piezoelectric properties in piezoelectric materials and devices.https://www.mdpi.com/2079-4991/11/7/1753piezoelectricanisotropyK<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub>phasetemperature |
spellingShingle | Weixiong Li Chunxu Chen Guangzhong Xie Yuanjie Su Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy Nanomaterials piezoelectric anisotropy K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> phase temperature |
title | Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy |
title_full | Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy |
title_fullStr | Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy |
title_full_unstemmed | Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy |
title_short | Optimizing K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> Single Crystal by Engineering Piezoelectric Anisotropy |
title_sort | optimizing k sub 0 5 sub na sub 0 5 sub nbo sub 3 sub single crystal by engineering piezoelectric anisotropy |
topic | piezoelectric anisotropy K<sub>0.5</sub>Na<sub>0.5</sub>NbO<sub>3</sub> phase temperature |
url | https://www.mdpi.com/2079-4991/11/7/1753 |
work_keys_str_mv | AT weixiongli optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy AT chunxuchen optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy AT guangzhongxie optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy AT yuanjiesu optimizingksub05subnasub05subnbosub3subsinglecrystalbyengineeringpiezoelectricanisotropy |