Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect

The flow of the hybrid nanofluid (copper–titanium dioxide/water) over a nonlinearly stretching surface was studied with suction and radiation effect. The governing partial differential equations were then converted into non-linear ordinary differential equations by using proper similarity transforma...

Full description

Bibliographic Details
Main Authors: Emad H. Aly, Alin V. Roşca, Natalia C. Roşca, Ioan Pop
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/18/2220
Description
Summary:The flow of the hybrid nanofluid (copper–titanium dioxide/water) over a nonlinearly stretching surface was studied with suction and radiation effect. The governing partial differential equations were then converted into non-linear ordinary differential equations by using proper similarity transformations. Therefore, these equations were solved by applying a numerical technique, namely Chebyshev pseudo spectral differentiation matrix. The results of the flow field, temperature distribution, reduced skin friction coefficient and reduced Nusselt number were deduced. It was found that the rising of the mass flux parameter slows down the velocity and, hence, decreases the temperature. Further, on enlarging the stretching parameter, the velocity and temperature increases and decreases, respectively. In addition, it was mentioned that the radiation parameter can effectively control the thermal boundary layer. Finally, the temperature decreases when the values of the temperature parameter increases.
ISSN:2227-7390