Monotone Boolean Functions with s Zeros Farthest from Threshold Functions

Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a...

Full description

Bibliographic Details
Main Authors: Kazuyuki Amano, Jun Tarui
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3425/pdf
Description
Summary:Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a monotone Boolean function $g$ on the $n$-cube with $s$ zeros, what is the maximum of $d(g,T_t)$? We show that the following monotone function $p_s$ maximizes the distance: For $x \in \{0,1\}^n$, $p_s(x)=0$ if and only if $N(x) < s$, where $N(x)$ is the integer whose $n$-bit binary representation is $x$. Our result generalizes the previous work for the case $t=\lceil n/2 \rceil$ and $s=2^{n-1}$ by Blum, Burch, and Langford [BBL98-FOCS98], who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the previous work for the same $t$ and $s$ by Amano and Maruoka [AM02-ALT02].
ISSN:1365-8050