Reproducible big data science: A case study in continuous FAIRness.

Big biomedical data create exciting opportunities for discovery, but make it difficult to capture analyses and outputs in forms that are findable, accessible, interoperable, and reusable (FAIR). In response, we describe tools that make it easy to capture, and assign identifiers to, data and code thr...

Full description

Bibliographic Details
Main Authors: Ravi Madduri, Kyle Chard, Mike D'Arcy, Segun C Jung, Alexis Rodriguez, Dinanath Sulakhe, Eric Deutsch, Cory Funk, Ben Heavner, Matthew Richards, Paul Shannon, Gustavo Glusman, Nathan Price, Carl Kesselman, Ian Foster
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0213013

Similar Items