Assessing the applicability of stable isotope analysis to determine the contribution of landfills to vultures' diet.

Human activities cause changes to occur in the environment that affect resource availability for wildlife. The increase in the human population of cities has led to a rise in the amount of waste deposited in landfills, installations that have become a new food resource for both pest and threatened s...

Full description

Bibliographic Details
Main Authors: Helena Tauler-Ametller, Antonio Hernández-Matías, Francesc Parés, Joan Ll Pretus, Joan Real
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5931503?pdf=render
Description
Summary:Human activities cause changes to occur in the environment that affect resource availability for wildlife. The increase in the human population of cities has led to a rise in the amount of waste deposited in landfills, installations that have become a new food resource for both pest and threatened species such as vultures. In this study we used stable isotope analysis (SIA) and conventional identification of food remains from Egyptian Vultures (Neophron percnopterus) to assess the applicability of SIA as a new tool for determining the composition of the diets of vultures, a group of avian scavengers that is threatened worldwide. We focused on an expanding Egyptian Vulture population in NE Iberian Peninsula to determine the part played by landfills and livestock in the diet of these species, and aimed to reduce the biases associated with conventional ways of identifying food remains. We compared proportions of diet composition obtained with isotope mixing models and conventional analysis for five main prey. The greatest agreement between the two methods was in the categories 'landfills' and 'birds' and the greatest differences between the results from the two methods were in the categories 'livestock', 'carnivores' and 'wild herbivores'. Despite uncertainty associated to SIA, our results showed that stable isotope analysis can help to distinguish between animals that rely on waste and so present enriched levels of δ 13C than those that feed on the countryside. Indeed, a high proportion of food derived from landfills (nearly 50%) was detected in some breeding pairs. Furthermore we performed GLMM analyses that showed that high values of δ 13C in Egyptian Vulture feathers (a proxy of feeding in landfills) are related with high levels of humanization of territories. This method has the potential to be applied to other threatened vulture species for which there is a lack of information regarding resources they are consuming, being especially important as the main causes of vultures decline worldwide are related to the consumption and availability of food resources.
ISSN:1932-6203