Summary: | Recently, machine learning (ML) methods have been used to create powerful language models for a broad range of natural language processing tasks. An important subset of this field is that of generating code of programming languages for automatic software development. This review provides a broad and detailed overview of studies for code generation using ML. We selected 37 publications indexed in arXiv and IEEE Xplore databases that train ML models on programming language data to generate code. The three paradigms of code generation we identified in these studies are description-to-code, code-to-description, and code-to-code. The most popular applications that work in these paradigms were found to be code generation from natural language descriptions, documentation generation, and automatic program repair, respectively. The most frequently used ML models in these studies include recurrent neural networks, transformers, and convolutional neural networks. Other neural network architectures, as well as non-neural techniques, were also observed. In this review, we have summarized the applications, models, datasets, results, limitations, and future work of 37 publications. Additionally, we include discussions on topics general to the literature reviewed. This includes comparing different model types, comparing tokenizers, the volume and quality of data used, and methods for evaluating synthesized code. Furthermore, we provide three suggestions for future work for code generation using ML.
|