Crank-Nicholson Scheme of the Zeroth-Order Approximate Deconvolution Model of Turbulence Based On a Mixed Formulation

This report presents a method with high spatial and temporal accuracy for estimating solutions of Navier-Stokes equations at high Reynolds number. It employs Crank-Nicolson time discretization along with the zeroth-order ap-proximate deconvolution model of turbulence to regularize the flow prob-lem;...

Full description

Bibliographic Details
Main Author: Mustafa Ağgül
Format: Article
Language:English
Published: Turkish Society of Automotive Engineers 2020-09-01
Series:International Journal of Automotive Science and Technology
Subjects:
Online Access:https://dergipark.org.tr/en/pub/ijastech/issue/55251/729443
Description
Summary:This report presents a method with high spatial and temporal accuracy for estimating solutions of Navier-Stokes equations at high Reynolds number. It employs Crank-Nicolson time discretization along with the zeroth-order ap-proximate deconvolution model of turbulence to regularize the flow prob-lem; solves a deviation of the Navier Stokes equation instead. Both theoreti-cal and computational findings of this report illustrate that the model pro-duces a high order of accuracy and stability. Furthermore, measurements of the drag and lift coefficients of a benchmark problem verify the potential of the model in this kind of computations.
ISSN:2587-0963