Mitigation of Rumen Methane Emissions with Foliage and Pods of Tropical Trees

Methane produced by enteric fermentation contributes to the emission of greenhouse gases (GHG) into the atmosphere. Methane is one of the GHG resulting from anthropogenic activities with the greater global warming contribution. Ruminant production systems contribute between 18% and 33% of methane em...

Full description

Bibliographic Details
Main Authors: Jorge Canul-Solis, María Campos-Navarrete, Angel Piñeiro-Vázquez, Fernando Casanova-Lugo, Marcos Barros-Rodríguez, Alfonso Chay-Canul, José Cárdenas-Medina, Luis Castillo-Sánchez
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/10/5/843
Description
Summary:Methane produced by enteric fermentation contributes to the emission of greenhouse gases (GHG) into the atmosphere. Methane is one of the GHG resulting from anthropogenic activities with the greater global warming contribution. Ruminant production systems contribute between 18% and 33% of methane emissions. Due to this, there has been growing interest in finding feed alternatives which may help to mitigate methane production in the rumen. The presence of a vast range of secondary metabolites in tropical trees (coumarins, phenols, tannins, and saponins, among others) may be a valuable alternative to manipulate rumen fermentation and partially defaunate the rumen, and thus reduce enteric methane production. Recent reports suggest that it is possible to decrease methane emissions in sheep by up to 27% by feeding them saponins from the tea leaves of <i>Camellia sinensis</i>; partial defaunation (54%) of the rumen has been achieved using saponins from <i>Sapindus saponaria</i>. The aim of this review was to collect, analyze, and interpret scientific information on the potential of tropical trees and their secondary metabolites to mitigate methane emissions from ruminants.
ISSN:2076-2615