Gabor-based anisotropic diffusion with lattice Boltzmann method for medical ultrasound despeckling

Medical ultrasound images are corrupted by speckle noise, and despeckling methods are required to effectively and efficiently reduce speckle noise while simultaneously preserving details of tissues. This paper proposes a despeckling approach named the Gabor-based anisotropic diffusion coupled with t...

Full description

Bibliographic Details
Main Authors: Haohao Xu, Yuchen Gong, Xinyi Xia, Dong Li, Zhuangzhi Yan, Jun Shi, Qi Zhang
Format: Article
Language:English
Published: AIMS Press 2019-08-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/mbe.2019379?viewType=HTML
Description
Summary:Medical ultrasound images are corrupted by speckle noise, and despeckling methods are required to effectively and efficiently reduce speckle noise while simultaneously preserving details of tissues. This paper proposes a despeckling approach named the Gabor-based anisotropic diffusion coupled with the lattice Boltzmann method (GAD-LBM), which uses the lattice Boltzmann method (LBM) to fast solve the partial differential equation of an anisotropic diffusion model embedded with the Gabor edge detector. We evaluated the GAD-LBM on both synthetic and clinical ultrasound images, and the experimental results suggested that the GAD-LBM was superior to other nine methods in speckle suppression and detail preservation. For synthetic and clinical images, the computation time of the GAD-LBM was about 1/90 to 1/20 of the GAD solved with the finite difference, indicating the advantage of the GAD-LBM in efficiency. The GAD-LBM not only has excellent ability of noise reduction and detail preservation for ultrasound images, but also has advantages in computational efficiency.
ISSN:1551-0018