Unsupervised hyperspectral band selection by combination of unmixing and sequential clustering techniques

Selecting the decisive spectral bands is a key issue in unsupervised hyperspectral band selection techniques. These methods are the most popular ways for dimensionality reduction of original data. A compact data representation without compromising the physical information and optimizing the separati...

Full description

Bibliographic Details
Main Authors: Sarra Ikram Benabadji, Moussa Sofiane Karoui, Khelifa Djerriri, Issam Boukerch, Nezha Farhi, Mohammed Amine Bouhlala
Format: Article
Language:English
Published: Taylor & Francis Group 2019-01-01
Series:European Journal of Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/22797254.2018.1549511
Description
Summary:Selecting the decisive spectral bands is a key issue in unsupervised hyperspectral band selection techniques. These methods are the most popular ways for dimensionality reduction of original data. A compact data representation without compromising the physical information and optimizing the separation between different materials are the main objectives of such selection processes. In this work, a hyperspectral band selection approach is proposed based on linear spectral unmixing and sequential clustering techniques. The use of these two specific techniques constitutes the main novelty of this investigation. The proposed approach operates in different successive steps. It starts with extracting material spectra contained in the considered data using an unmixing method. Then, the variance of extracted spectra samples is calculated at each wavelength, which results in a variances vector. This one is segmented into a fixed number of clusters using a sequential clustering strategy. Finally, only one spectral band is selected for each segment. This band corresponds to the wavelength at which a maximum variance value is obtained. Experiments on three real hyperspectral data demonstrate the superiority of the proposed approach in comparison with four methods from the literature.
ISSN:2279-7254