Taking Rational Numbers at Random

In this article, some prescriptions to define a distribution on the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math&...

Full description

Bibliographic Details
Main Author: Nicola Cufaro Petroni
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:AppliedMath
Subjects:
Online Access:https://www.mdpi.com/2673-9909/3/3/34
_version_ 1797581529126273024
author Nicola Cufaro Petroni
author_facet Nicola Cufaro Petroni
author_sort Nicola Cufaro Petroni
collection DOAJ
description In this article, some prescriptions to define a distribution on the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> of all rational numbers in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> are outlined. We explored a few properties of these distributions and the possibility of making these rational numbers <i>asymptotically equiprobable</i> in a suitable sense. In particular, it will be shown that in the said limit—albeit no absolutely continuous uniform distribution can be properly defined in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula>—the probability allotted to every single <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> asymptotically vanishes, while that of the subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula> falling in an interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>⊆</mo><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> goes to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></semantics></math></inline-formula>. We finally present some hints to complete sequencing without repeating the numbers in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula> as a prerequisite to laying down more distributions on it.
first_indexed 2024-03-10T23:05:51Z
format Article
id doaj.art-cf4d49658e6b4f3f83a3acc24c61ea2e
institution Directory Open Access Journal
issn 2673-9909
language English
last_indexed 2024-03-10T23:05:51Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series AppliedMath
spelling doaj.art-cf4d49658e6b4f3f83a3acc24c61ea2e2023-11-19T09:20:48ZengMDPI AGAppliedMath2673-99092023-09-013364866310.3390/appliedmath3030034Taking Rational Numbers at RandomNicola Cufaro Petroni0Department of Mathematics and TIRES, University of Bari, INFN Sezione di Bari, via E. Orabona 4, 70125 Bari, ItalyIn this article, some prescriptions to define a distribution on the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> of all rational numbers in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula> are outlined. We explored a few properties of these distributions and the possibility of making these rational numbers <i>asymptotically equiprobable</i> in a suitable sense. In particular, it will be shown that in the said limit—albeit no absolutely continuous uniform distribution can be properly defined in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula>—the probability allotted to every single <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>∈</mo><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> asymptotically vanishes, while that of the subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula> falling in an interval <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow><mo>⊆</mo><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> goes to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></semantics></math></inline-formula>. We finally present some hints to complete sequencing without repeating the numbers in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Q</mi><mn>0</mn></msub></semantics></math></inline-formula> as a prerequisite to laying down more distributions on it.https://www.mdpi.com/2673-9909/3/3/34rational numbersdiscrete distributionsrandomness
spellingShingle Nicola Cufaro Petroni
Taking Rational Numbers at Random
AppliedMath
rational numbers
discrete distributions
randomness
title Taking Rational Numbers at Random
title_full Taking Rational Numbers at Random
title_fullStr Taking Rational Numbers at Random
title_full_unstemmed Taking Rational Numbers at Random
title_short Taking Rational Numbers at Random
title_sort taking rational numbers at random
topic rational numbers
discrete distributions
randomness
url https://www.mdpi.com/2673-9909/3/3/34
work_keys_str_mv AT nicolacufaropetroni takingrationalnumbersatrandom