Metal Additive Manufacturing Parts Inspection Using Convolutional Neural Network

Metal additive manufacturing (AM) is gaining increasing attention from academia and industry due to its unique advantages compared to the traditional manufacturing process. Parts quality inspection is playing a crucial role in the AM industry, which can be adopted for product improvement. However, t...

Full description

Bibliographic Details
Main Authors: Wenyuan Cui, Yunlu Zhang, Xinchang Zhang, Lan Li, Frank Liou
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/2/545
Description
Summary:Metal additive manufacturing (AM) is gaining increasing attention from academia and industry due to its unique advantages compared to the traditional manufacturing process. Parts quality inspection is playing a crucial role in the AM industry, which can be adopted for product improvement. However, the traditional inspection process has relied on manual recognition, which could suffer from low efficiency and potential bias. This study presented a convolutional neural network (CNN) approach toward robust AM quality inspection, such as good quality, crack, gas porosity, and lack of fusion. To obtain the appropriate model, experiments were performed on a series of architectures. Moreover, data augmentation was adopted to deal with data scarcity. L2 regularization (weight decay) and dropout were applied to avoid overfitting. The impact of each strategy was evaluated. The final CNN model achieved an accuracy of 92.1%, and it took 8.01 milliseconds to recognize one image. The CNN model presented here can help in automatic defect recognition in the AM industry.
ISSN:2076-3417