Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations

This paper aims to investigate and categorize all inequivalent and irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo...

Full description

Bibliographic Details
Main Authors: Zhichao Chen, Ruju Zhao
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/12/2598
_version_ 1797455197771923456
author Zhichao Chen
Ruju Zhao
author_facet Zhichao Chen
Ruju Zhao
author_sort Zhichao Chen
collection DOAJ
description This paper aims to investigate and categorize all inequivalent and irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-modules of a commutative unit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula>, equipped with set {1, <i>x</i>, <i>y</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi></mrow></semantics></math></inline-formula>} satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> as a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-basis by using matrix equations, which was part of a call for a Special Issue about matrix inequalities and equations by Symmetry. If the rank of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-module <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we prove that there are finitely many inequivalent and irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-modules, respectively, one and three. However, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>, there is no irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-module.
first_indexed 2024-03-09T15:48:04Z
format Article
id doaj.art-cf5f1dff6ecd44c881830167dd77d737
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T15:48:04Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-cf5f1dff6ecd44c881830167dd77d7372023-11-24T18:19:47ZengMDPI AGSymmetry2073-89942022-12-011412259810.3390/sym14122598Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix EquationsZhichao Chen0Ruju Zhao1School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, ChinaCollege of Science, Beibu Gulf University, Qinzhou 535011, ChinaThis paper aims to investigate and categorize all inequivalent and irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-modules of a commutative unit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula>, equipped with set {1, <i>x</i>, <i>y</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi></mrow></semantics></math></inline-formula>} satisfying <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn><mo>,</mo><mspace width="0.277778em"></mspace><mspace width="0.277778em"></mspace><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> as a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-basis by using matrix equations, which was part of a call for a Special Issue about matrix inequalities and equations by Symmetry. If the rank of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-module <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula>, we prove that there are finitely many inequivalent and irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-modules, respectively, one and three. However, if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>, there is no irreducible <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></semantics></math></inline-formula>-module.https://www.mdpi.com/2073-8994/14/12/2598<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm997"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-ringirreducible <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm996"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-modulematrix equationNIM solution
spellingShingle Zhichao Chen
Ruju Zhao
Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
Symmetry
<named-content content-type="inline-formula"><inline-formula> <mml:math id="mm997"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-ring
irreducible <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm996"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-module
matrix equation
NIM solution
title Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
title_full Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
title_fullStr Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
title_full_unstemmed Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
title_short Classification of Irreducible <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Modules of a <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">Z</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>-Ring Using Matrix Equations
title_sort classification of irreducible inline formula math display inline semantics mrow msub mi mathvariant double struck z mi mo mo msub mrow semantics math inline formula modules of a inline formula math display inline semantics mrow msub mi mathvariant double struck z mi mo mo msub mrow semantics math inline formula ring using matrix equations
topic <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm997"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-ring
irreducible <named-content content-type="inline-formula"><inline-formula> <mml:math id="mm996"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi mathvariant="double-struck">Z</mml:mi> <mml:mo>+</mml:mo> </mml:msub> </mml:mrow> </mml:semantics> </mml:math> </inline-formula></named-content>-module
matrix equation
NIM solution
url https://www.mdpi.com/2073-8994/14/12/2598
work_keys_str_mv AT zhichaochen classificationofirreducibleinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimomomsubmrowsemanticsmathinlineformulamodulesofainlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimomomsubmrowsemanticsmathinlin
AT rujuzhao classificationofirreducibleinlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimomomsubmrowsemanticsmathinlineformulamodulesofainlineformulamathdisplayinlinesemanticsmrowmsubmimathvariantdoublestruckzmimomomsubmrowsemanticsmathinlin