Quaternion Matrix Factorization for Low-Rank Quaternion Matrix Completion
The main aim of this paper is to study quaternion matrix factorization for low-rank quaternion matrix completion and its applications in color image processing. For the real-world color images, we proposed a novel model called low-rank quaternion matrix completion (LRQC), which adds total variation...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/9/2144 |
Summary: | The main aim of this paper is to study quaternion matrix factorization for low-rank quaternion matrix completion and its applications in color image processing. For the real-world color images, we proposed a novel model called low-rank quaternion matrix completion (LRQC), which adds total variation and Tikhonov regularization to the factor quaternion matrices to preserve the spatial/temporal smoothness. Moreover, a proximal alternating minimization (PAM) algorithm was proposed to tackle the corresponding optimal problem. Numerical results on color images indicate the advantages of our method. |
---|---|
ISSN: | 2227-7390 |