Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions

In this paper, we study the global structure of nodal solutions of $$ \begin{cases} u''''(x)=\lambda h(x)f(u(x)), & 0<x<1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\\ \end{cases}$$ where $\lambda > 0$ is a parameter, $h\in C([0,1],(0, \infty))$, $f\in C(\mathbb{R})$ and...

Full description

Bibliographic Details
Main Authors: Ruyun Ma, Dongliang Yan, Liping Wei
Format: Article
Language:English
Published: University of Szeged 2020-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8936
_version_ 1797830537823387648
author Ruyun Ma
Dongliang Yan
Liping Wei
author_facet Ruyun Ma
Dongliang Yan
Liping Wei
author_sort Ruyun Ma
collection DOAJ
description In this paper, we study the global structure of nodal solutions of $$ \begin{cases} u''''(x)=\lambda h(x)f(u(x)), & 0<x<1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\\ \end{cases}$$ where $\lambda > 0$ is a parameter, $h\in C([0,1],(0, \infty))$, $f\in C(\mathbb{R})$ and $sf(s)>0$ for $|s|>0$. We show the existence of $S$-shaped component of nodal solutions for the above problem. The proof is based on the bifurcation technique.
first_indexed 2024-04-09T13:37:42Z
format Article
id doaj.art-cf6f309ca0914acb8094a2fc3a37f566
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:42Z
publishDate 2020-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-cf6f309ca0914acb8094a2fc3a37f5662023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752020-12-0120208511410.14232/ejqtde.2020.1.858936Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditionsRuyun Ma0Dongliang Yan1Liping Wei2Department of Mathematics, Northwest Normal University, Lanzhou, P.R. ChinaNorthwest Normal University, Lanzhou, P.R. ChinaNorthwest Normal University, Lanzhou, P.R. ChinaIn this paper, we study the global structure of nodal solutions of $$ \begin{cases} u''''(x)=\lambda h(x)f(u(x)), & 0<x<1, \\ u(0)=u(1)=u'(0)=u'(1)=0,\\ \end{cases}$$ where $\lambda > 0$ is a parameter, $h\in C([0,1],(0, \infty))$, $f\in C(\mathbb{R})$ and $sf(s)>0$ for $|s|>0$. We show the existence of $S$-shaped component of nodal solutions for the above problem. The proof is based on the bifurcation technique.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8936clamped beamfourth order equationsconnected componentnodal solutionsbifurcation
spellingShingle Ruyun Ma
Dongliang Yan
Liping Wei
Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
Electronic Journal of Qualitative Theory of Differential Equations
clamped beam
fourth order equations
connected component
nodal solutions
bifurcation
title Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
title_full Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
title_fullStr Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
title_full_unstemmed Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
title_short Multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
title_sort multiplicity of nodal solutions for fourth order equation with clamped beam boundary conditions
topic clamped beam
fourth order equations
connected component
nodal solutions
bifurcation
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8936
work_keys_str_mv AT ruyunma multiplicityofnodalsolutionsforfourthorderequationwithclampedbeamboundaryconditions
AT dongliangyan multiplicityofnodalsolutionsforfourthorderequationwithclampedbeamboundaryconditions
AT lipingwei multiplicityofnodalsolutionsforfourthorderequationwithclampedbeamboundaryconditions