Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons

Abstract N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequ...

Full description

Bibliographic Details
Main Authors: Chad R. Camp, Anna Vlachos, Chiara Klöckner, Ilona Krey, Tue G. Banke, Nima Shariatzadeh, Sarah M. Ruggiero, Peter Galer, Kristen L. Park, Adam Caccavano, Sarah Kimmel, Xiaoqing Yuan, Hongjie Yuan, Ingo Helbig, Tim A. Benke, Johannes R. Lemke, Kenneth A. Pelkey, Chris J. McBain, Stephen F. Traynelis
Format: Article
Language:English
Published: Nature Portfolio 2023-09-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-023-05298-9
_version_ 1827709057419444224
author Chad R. Camp
Anna Vlachos
Chiara Klöckner
Ilona Krey
Tue G. Banke
Nima Shariatzadeh
Sarah M. Ruggiero
Peter Galer
Kristen L. Park
Adam Caccavano
Sarah Kimmel
Xiaoqing Yuan
Hongjie Yuan
Ingo Helbig
Tim A. Benke
Johannes R. Lemke
Kenneth A. Pelkey
Chris J. McBain
Stephen F. Traynelis
author_facet Chad R. Camp
Anna Vlachos
Chiara Klöckner
Ilona Krey
Tue G. Banke
Nima Shariatzadeh
Sarah M. Ruggiero
Peter Galer
Kristen L. Park
Adam Caccavano
Sarah Kimmel
Xiaoqing Yuan
Hongjie Yuan
Ingo Helbig
Tim A. Benke
Johannes R. Lemke
Kenneth A. Pelkey
Chris J. McBain
Stephen F. Traynelis
author_sort Chad R. Camp
collection DOAJ
description Abstract N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a +/− and Grin2a −/− mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a +/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a +/− mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a −/− mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
first_indexed 2024-03-10T17:14:33Z
format Article
id doaj.art-cf7691bd122c40aa8eaf85252a89fb91
institution Directory Open Access Journal
issn 2399-3642
language English
last_indexed 2024-03-10T17:14:33Z
publishDate 2023-09-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj.art-cf7691bd122c40aa8eaf85252a89fb912023-11-20T10:33:32ZengNature PortfolioCommunications Biology2399-36422023-09-016111610.1038/s42003-023-05298-9Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneuronsChad R. Camp0Anna Vlachos1Chiara Klöckner2Ilona Krey3Tue G. Banke4Nima Shariatzadeh5Sarah M. Ruggiero6Peter Galer7Kristen L. Park8Adam Caccavano9Sarah Kimmel10Xiaoqing Yuan11Hongjie Yuan12Ingo Helbig13Tim A. Benke14Johannes R. Lemke15Kenneth A. Pelkey16Chris J. McBain17Stephen F. Traynelis18Department of Pharmacology and Chemical Biology, Emory University School of MedicineSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthInstitute of Human Genetics, University of Leipzig Medical CenterInstitute of Human Genetics, University of Leipzig Medical CenterDepartment of Pharmacology and Chemical Biology, Emory University School of MedicineDepartment of Pharmacology and Chemical Biology, Emory University School of MedicineDivision of Neurology, Children’s Hospital of PhiladelphiaDepartment of Biomedical and Health Informatics, Children’s Hospital of PhiladelphiaUniversity of Colorado School of Medicine and Children’s Hospital ColoradoSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthDepartment of Pharmacology and Chemical Biology, Emory University School of MedicineDivision of Neurology, Children’s Hospital of PhiladelphiaUniversity of Colorado School of Medicine and Children’s Hospital ColoradoInstitute of Human Genetics, University of Leipzig Medical CenterSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthSection on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of HealthDepartment of Pharmacology and Chemical Biology, Emory University School of MedicineAbstract N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a +/− and Grin2a −/− mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a +/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a +/− mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a −/− mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.https://doi.org/10.1038/s42003-023-05298-9
spellingShingle Chad R. Camp
Anna Vlachos
Chiara Klöckner
Ilona Krey
Tue G. Banke
Nima Shariatzadeh
Sarah M. Ruggiero
Peter Galer
Kristen L. Park
Adam Caccavano
Sarah Kimmel
Xiaoqing Yuan
Hongjie Yuan
Ingo Helbig
Tim A. Benke
Johannes R. Lemke
Kenneth A. Pelkey
Chris J. McBain
Stephen F. Traynelis
Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
Communications Biology
title Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
title_full Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
title_fullStr Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
title_full_unstemmed Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
title_short Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
title_sort loss of grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons
url https://doi.org/10.1038/s42003-023-05298-9
work_keys_str_mv AT chadrcamp lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT annavlachos lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT chiaraklockner lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT ilonakrey lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT tuegbanke lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT nimashariatzadeh lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT sarahmruggiero lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT petergaler lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT kristenlpark lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT adamcaccavano lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT sarahkimmel lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT xiaoqingyuan lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT hongjieyuan lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT ingohelbig lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT timabenke lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT johannesrlemke lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT kennethapelkey lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT chrisjmcbain lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons
AT stephenftraynelis lossofgrin2acausesatransientdelayintheelectrophysiologicalmaturationofhippocampalparvalbumininterneurons